
RESEARCH ARTICLE

Soft Regulation with Crowd
Recommendation: Coordinating Self-
Interested Agents in Sociotechnical Systems
under Imperfect Information
Yu Luo1☯, Garud Iyengar2☯, Venkat Venkatasubramanian1,2☯*

1Department of Chemical Engineering, Columbia University, New York, NY, United States of America,
2Department of Industrial Engineering and Operations Research, Columbia University, New York, NY,
United States of America

☯ These authors contributed equally to this work.
* venkat@columbia.edu

Abstract
Regulating emerging industries is challenging, even controversial at times. Under-regula-

tion can result in safety threats to plant personnel, surrounding communities, and the envi-

ronment. Over-regulation may hinder innovation, progress, and economic growth. Since

one typically has limited understanding of, and experience with, the novel technology in

practice, it is difficult to accomplish a properly balanced regulation. In this work, we propose

a control and coordination policy called soft regulation that attempts to strike the right bal-

ance and create a collective learning environment. In soft regulation mechanism, individual

agents can accept, reject, or partially accept the regulator’s recommendation. This non-

intrusive coordination does not interrupt normal operations. The extent to which an agent

accepts the recommendation is mediated by a confidence level (from 0 to 100%). Among all

possible recommendation methods, we investigate two in particular: the best recommenda-

tion wherein the regulator is completely informed and the crowd recommendation wherein

the regulator collects the crowd’s average and recommends that value. We show by analy-

sis and simulations that soft regulation with crowd recommendation performs well. It con-

verges to optimum, and is as good as the best recommendation for a wide range of

confidence levels. This work sheds a new theoretical perspective on the concept of the wis-

dom of crowds.

Introduction
Regulating emerging technologies is challenging, and often controversial; requiring a careful
trade-off between stability, security, performance, and cost in an uncertain environment.
Recent examples of emerging technologies include hydraulic fracturing, carbon sequestration,
deep sea mining, geoengineering, and personalized medicine. Hydraulic fracturing, for
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example, has grown to be a transforming force in the petrochemical industries in recent years
with its proponents and opponents debating passionately about its benefits and costs to the
society with the attendant regulatory challenges [1, 2].

The regulator’s (or central planner’s) dilemma with regard to emerging technologies is to
strike the appropriate balance in regulation. Under-regulation can result in damage to plant
personnel, surrounding communities, and the environment. Over-regulation, on the other
hand, can hamper economic growth and security. When a technology is new, the inherent risks
and benefits are not immediately obvious and only become clear over time, making it harder
for the regulatory agency to strike the correct balance in the early stages. This uncertainty
necessitates a framework that allows for a very close collaboration between the regulatory
agency and the regulated entities that have direct access to field performance, and hence have
direct knowledge of what worked and what did not.

In a typical regulatory environment involving conventional technologies, regulators issue
mandates that have to be followed by the regulated agents. The agents face fines and other
punitive consequences for non-compliance. In this paper, we will call this approach hard regu-
lation. We argue that hard regulation is not very effective for regulating emerging technologies.
Hard regulation also hinders innovation [3]. The regulation of the Internet illustrates these
issues very well. Laws like Digital Millennium Copyright Act (DMCA) and Stop Online Piracy
Act (SOPA) have been criticized [4–8], as they arguably “reduce freedom of expression and
undermine the dynamic, innovative global Internet.” In addition, while attempting to protect
intellectual property, these laws hurt computer security by inhibiting research on security
related issues [9]. During the period when a new technology is still maturing, the regulator is
just as unsure as the regulated agents about the risk-benefit trade-off, and therefore, hard regu-
lation, through its unintended consequences, could potentially do more harm than good.
Instead of issuing potentially misdirected mandates, the regulator and the agents should jointly
participate in learning about the emerging technology and its payoff structure. The focus of
this work is on how to achieve this elusive goal through an intellectual framework that facili-
tates both control and learning in sociotechnical systems.

Control and learning are essential elements in managing risk and regulating behavior in
sociotechnical systems (see Table 1). In a purely technical setting, i.e., when all the elements of
the systems are machines, the common practice to maintain an efficient and stable system is to
use hard control where the entities follow strictly specified policies. Process control, robotics,
etc., are all examples of hard regulation or hard control. When there is no reliable model or a
desirable set point available, one needs to simultaneously learn and control the system dynam-
ics. We call techniques, such as machine learning, stochastic approximation, etc., hard learning
techniques since they also require the entities to follow strict instructions.

However, in a sociotechnical system with active human participants, hard control, or strict
mandates, may not always be appropriate. Mandates can potentially do more harm than good as
we argued earlier. A more appropriate course of action would be to offer options to agents that
are adopted only when they are incentive compatible. We call such approaches soft control [10,
11]. Examples of this approach include the soft paternalism approach for modifying social

Table 1. Control and learning in sociotechnical systems.

Control Learning

Hard feedback control, model predictive control, hard
regulation, robot formation, laws, etc.

machine learning, stochastic approximation,
Kalman filter, evolutionary dynamics, etc.

Soft persuasion, soft paternalism, peer pressure,
social engineering, mechanism design, etc.

social sensing, social learning, pervasive mobile
computing, etc.

doi:10.1371/journal.pone.0150343.t001
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behavior [12] wherein carefully designed options “nudge” people to make better decisions [13];
or policy teaching [11] wherein the regulator allocates rewards in such a way that the induced
action of agents maximizes the regulator’s value. Other examples include efforts by utility compa-
nies to induce consumers to minimize power wastage by reporting average consumption [14];
and health tracking devices, e.g., Fitbit, Jawbone Up,Nike FuelBand, etc., that all incorporate
social nudging to motivate physical activities. The soft control policy using peer pressure is shown
to promote cooperation in these and other settings, both in theory and in practice [15–18].

As in the case with hard control, soft control can be used only when there is a reliable model
and a well-defined set point. Soft paternalism and similar social mechanisms are effective
because we understand saving energy and staying physically active are the right things to do.
What if we do not know what is best for the agents? Soft learning is a class of learning mecha-
nisms that appropriately incentivize agents in a social network to aggregate important informa-
tion. Examples of soft learning include social sensing and social learning [18–20] in the context
of real-time traffic information and online reviews (such as Yelp).

In this work, we propose soft regulation as a new regulatory paradigm that combines fea-
tures of soft control and soft learning. The regulator aggregates key system-level statistics in a
privacy preserving [21] manner (individuals do not need to explicitly disclose their states) and
shares these statistics with all agents. The agents have the flexibility to accept, reject, or partially
accept the recommendations from the regulator based on their own self interests. The recom-
mendations are simply “nudges” [13]. The mechanism does not interrupt the regulated entities
who have direct access to field performance. It creates a collective learning environment for
both the regulator and the agents. This partial acceptance (or confidence level) of recommen-
dation is a crucial feature of soft regulation. It critically determines the effectiveness of the
mechanism. Soft regulation seeks a balance between over- and under-regulation: Agents have
the freedom to rely on both individual exploration and social learning.

We expect soft regulation to be effective when the system has the following features:

1. Imperfect information: The action-utility payoff structure is poorly understood, i.e., the data
are noisy and the models are absent or incomplete. Each individual may only possess partial
information about the unknown process. Agents rely on inaccurate measurements, approxi-
mations, or subjective evaluations to optimize. Later we will discuss how noise, paradoxi-
cally, is necessary for soft regulation to add value.

2. Weak interaction: The agents can optimize their own actions without taking into consider-
ation the response of other agents, i.e., each’s utility or payoff is only a function of the
agent’s own state, and the optimal set point is identical among agents. A good example of
such a setting is the initial stages of a new technology; the resources being exploited are
abundant and the profits of the agents are not limited by competition but by their ability to
exploit the resource effectively. Although the reward an agent receives while operating at a
set point may vary, the set point itself, however, is likely to be identical or at least restricted
to a narrow range. The discovered set points (by soft regulation or traditional methods) will
later become the industry standards when the technology matures. Another example of set-
ting with weak or no interaction is when humans improve their own health conditions by
changing habits, medications, or even environments. The interaction among agents is usu-
ally minimal. Although each has his/her own unique physiological configurations, grouped
by characteristics such as age, gender, profession, etc., they are likely to exhibit common
optimal set points within groups.

3. Bounded rationality: Agents are autonomous and self-interested, and they alwaysmove in a
direction that locally improves utility, subject to available information.
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Soft regulation creates a feedback system where agents have the freedom to choose to accept
this feedback. Feedback has long been recognized as an essential feature of complex adaptive
systems where causes and effects are intertwined. There have been several attempts over the
years to understand the dynamics of social systems in terms of feedback control (see, e.g., [22–
25]). While such contributions are useful advances, much of this work, however, is conceptual
and qualitative. In contrast, soft regulation is a practical and quantitative methodology—self-
interested agents use the feedback from past outcomes to determine future actions, and the reg-
ulator provides all the agents a feedback that aggregates system-level information. One can
extend this to include group, organization, even societal-level feedback loops. In this study, we
focus on the bottom two levels of such a feedback control hierarchy.

There are several ways to generate feedbacks for soft regulation. We focus on two methodol-
ogies in this paper: the best recommendation and the crowd recommendation. As the name
suggests, best recommendation corresponds to the case where the regulator has full informa-
tion and computes the feedback by solving a centralized optimal control problem. The crowd
recommendation on the other hand, is simply the average of the agents’ actions. We show that,
despite its simplicity, crowd recommendation is as good as the best recommendation for a
wide range of confidence levels. This is unsurprising. The collective wisdom of groups has been
acknowledged in the literature; see, e.g., the Condorcet’s jury theorem [26] and popular bestsel-
lers such as The Wisdom of Crowds [27] andWiser: Getting Beyond Groupthink to Make
Groups Smarter [28]. In this work, we propose a control-theoretic and mathematical frame-
work that goes beyond one-time predictions and investigates the effectiveness of the wisdom of
crowds for optimizing a process using continuously refined information.

The scope of this paper is twofold. We first introduce the concept of soft regulation where
agents have the freedom to partially accept the feedback from the regulator. We then investi-
gate a unique and practical way of implementing soft regulation—regulator issuing crowd rec-
ommendation. In the remaining paper, we formally define the problem and show by analysis
and simulation that soft regulation with crowd recommendation indeed performs well.

Background
In this paper, we analyze a stylized model of soft regulation that preserves the essential features
discussed in the introduction. The system consists of one regulator and n agents. Agent i wants
to select an action xi that maximizes the value of the real-valued and strongly concave utility
function fi(xi) over a convex compact set X � R. We assume that although the individual util-
ity functions fi are different for each agent, the optimal set point y� ¼ arg max x2XfiðxÞ is iden-
tical across agents.

We assume that the utility function fi(xi) is not explicitly known, nor is it deterministic;
agents cannot solve the optimization problem explicitly. In theory, by averaging out the noise,
one can obtain a more accurate mapping of the utility function. However, in our setting, each
sample corresponds to actual utility each agent receives; therefore, they might not have the
incentive to oversample at the location where the utility is low. The agents update individual
actions using the following dynamics:

�xi ¼ giðxiÞ

where gi denotes the optimization algorithm used by the i-th agent. In practice, gi can be any
function that maps an old action xi to a new action �xi. In order to converge to the optimal θ�,
the function must satisfy regularity conditions. More specifically, gi should converge to a
unique fixed point regardless of the initial value of xi. Although the conclusions of this paper
are applicable to a wide range of optimization methods, here we focus on a commonly used
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algorithm named Kiefer-Wolfowitz stochastic gradient method [29] where

giðxiÞ ¼ xi þ
aðtÞ
cðtÞ � fiðxi þ cðtÞÞ � fiðxi � cðtÞÞð Þ: ð1Þ

At time t, the i-th agent samples the payoff twice at the vicinity of its current state xi, which
is only known to the agent. The parameters a(t) and c(t) are known and predefined. The agent
then computes the next step according to Eq (1). This algorithm is guaranteed to converge in
probability when

E½ fi � E½fi��2 < 1; lim
t!1

cðtÞ ¼ 0;
X1
t¼1

aðtÞ ¼ 1;
X1
t¼1

aðtÞ2
cðtÞ2 < 1:

We call a setting where an agent updates its action based on its own measurement the open
loop scenario (or asocial learning as in [20]).

In the soft regulation setting the regulator computes a feedback recommendation u. The
agents then combine u with �xi ¼ giðxiÞ to compute a new action xþi in the following manner:

xþi ¼ hiðxiÞ � ð1� biÞgiðxiÞ þ biu ¼ ð1� biÞ�xi þ biu

where βi 2 [0, 1] or [0, 100%] is a measure of the confidence that the i-th agent puts on the feed-
back, and is therefore, called the confidence level. Note that we use xþi , xi, t+1, and xi(t + 1) nota-
tions interchangeably. Subscript t is omitted in most situations. The confidence level β plays an
important role in the resulting dynamics. Action changes are relatively independent of recom-
mendation for agents with small β (the explorers), and action remains in the vicinity of u for
agents with large β (the followers).

Note that soft regulation is not an example of direct social learning as described in [20]:
There is no “best agent” to follow because the payoffs are private information and noisy. That
said, explorers do resemble the asocial innovators and the followers resemble the copying
agents in the social learning setting [20]. The confidence level of an agent may be indirectly
related to peer pressure [15–18]: The followers experience a higher peer pressure than the
explorers, and therefore, set a higher value of β. Also note that hi(xi) can be re-written as fol-
lows:

hiðxiÞ ¼ xi þ ð1� biÞð�xi � xiÞ þ biðu� xiÞ:

The soft regulation feedback function resembles the feedback seen in bird flocks and swarm
intelligence [30].

When the regulator is fully informed about the functions fi, gi, and βi, the optimal feedback
u� can be computed explicitly by solving the following centralized optimal control problem
that maximizes social welfare (sum of utilities) over the projected trajectory:

maximize
X

t

wðtÞ
X

i

fiðxiðtÞÞ

subject to xiðt þ 1Þ ¼ ð1� biÞgiðxiðtÞÞ þ biuðtÞ

where the time varying weight w(t) can favor either the present or future. We call the solution
u� to this problem the best recommendation.

Since the function fi, gi, and the parameter βi are only privately known to the agents, in prac-
tice, it is unlikely that the regulator knows the functions and the parameters. Following [14, 27,
28], we assume that the regulator reports the average, i.e., u ¼ 1

n

P
i xi. We call this recommen-

dation the crowd recommendation. Note that using privacy preserving computations [21], the
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regulator can compute the crowd recommendation without ever learning any individual input
xi. In the rest of this paper, we demonstrate that the crowd recommendation ensures the con-
vergence to the optimal set point; moreover, it is as good as the best recommendation for a
wide range of confidence levels.

Optimality, robustness, and efficiency of soft regulation
Optimality, robustness, and efficiency are three important characteristics of a mechanism. We
define an optimal process as one that converges to the maximum utility eventually, a robust
process as one that the equilibrium can be restored when subjected to disturbances, and an effi-
cient process as one that converges quickly to the optimum.

We first show that soft regulation with crowd recommendation is optimal and robust when
subjected to bounded noises if the individual confidence level βi satisfies 0� βi < 100%. We
describe the essential steps of the proof in this section. Interested readers can find detailed deri-
vations in S1 Appendix.

The nominal (noise free) optimality of soft regulation can be proved using contraction.
Recall our assumption that an agent always adopts an optimal algorithm gi to find θ� that maxi-
mizes utility fi. In other words, the map defined by gi converges to θ� regardless of the initial
condition, i.e., gi is a contraction and θ� is its unique fixed point. Consequently, there exists a
constant c< 1 such that |gi(x) − gi(y)|� c|x − y|. If gi is differentiable; then we have jg 0iðxÞj < 1

for all x 2 X. The soft regulation process is hi = (1 − βi)gi + βu where u ¼ 1
n

P
ixi is the crowd

recommendation. We define column vector x = [x1, . . ., xn]
T as the system state and x+ =H(x)

as the system-wide soft regulation map. Whether a map contracts is determined by the eigen-
values of its Jacobian matrix. We can show that the largest absolute eigenvalue of the Jacobian
is strictly less than 1 whenever 0� βi< 100%. Thus, soft regulation with crowd recommenda-
tion is also optimal. Note that this proof is applicable to a completely heterogeneous system
where both the optimization algorithm gi and the confidence level βi are different among indi-
viduals. See S1 Appendix for detailed derivations.

According to stability theory [31], the optimal state x� = [θ�, . . ., θ�]T is robust to bounded
disturbances if and only if there exists a continuous Lyapunov function for the soft regulation
process x+ =H(x). We show that V(x) = kx − x�k1, i.e., the Manhattan distance or ℓ1-norm
between the current state x and the optimal state x�, is a Lyapunov function for the process.
The contraction result is used to show that such function V(x) is acceptable and the optimal
state is robust. This completes the robustness proof.

We use current mean squared error (MSE) to indicate the efficiency of soft regulation, i.e.,

MSE ¼ 1

n
k x� x� k22 :

Here we are interested in how β affects the MSE. We simplify the analysis by setting βi� β.
From mean value theorem for vector-valued function, we have

E½MSEþ� � m2MSEþ ð1� bÞ2s2
o

wherem ¼ ð1� bÞmax 1�i�n;x2Xjg 0i ðxÞj þ b < 1 is the upper bound of contraction and σω <1
is the standard deviation of the zero-mean noise imposed on gi. The MSE evolution exhibits
first order dynamics: Increasing β (or increasingm) decreases the steady state expected MSE;
however, a larger β leads to a largerm, and therefore, a weaker contraction and slower conver-
gence. In a noisy system where σω is large, it is advisable for the agents to rely more on the rec-
ommendation using a larger β. There is a trade-off between accuracy and speed. This further
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implies that at a finite time t, there should exist an optimal β� between 0 and 100% such that
the MSE is the smallest.

Simulation of finite-time dynamics
For practical applications, it is more important to understand the transient or finite-time
dynamics of soft regulation, and more specifically, the role of confidence level in setting the
transient performance. We are able to illustrate with a few additional assumptions about the
system.

Recall that, we assume the underlying action-utility payoff function fi(xi) to be strongly con-
cave. In this section, our analysis will be focused on the simplest concave function, namely an
identical and quadratic utility function fi(xi) = f(xi) = −k(xi − θ�)2 + ω. Identical agents are help-
ful in identifying the effect of confidence level. The results can be readily extended to heteroge-
neous systems. In order to study the convergence behavior, one can without loss of generality,
assume that θ� = 0. This particular choice for f is motivated by the fact that any strongly con-
cave function can be approximated by a quadratic function near its optimum. The noise is
o 	 N ð0; soÞ. Agents only observe the noisy function values—the underlying structure is not
known to the agents.

We define the optimization efficiency as the percent reduction in MSE:

Zt �
MSEt0

�MSEt

MSEt0


 100:

The efficiency is 100 when the system reaches optimum. We simulate the agent dynamics in
NetLogo. The agent set is randomized by a fixed random seed in the program to ensure consis-
tency. For each set of parameters, we run the simulation five times and take the average. The
observed deviation was insignificant; therefore we omitted error bars. The model parameter
values are listed in Table 2. The noise o 	 N ð0; soÞ has the same variance as another random

variable � 	 unifð� ffiffiffi
3

p
so;

ffiffiffi
3

p
soÞ. We chose σω to be 200=

ffiffiffi
3

p
so that it is computationally

equivalent to a uniform ±200 noise. The parameters do not represent practical meanings. The
particular values are chosen such that the results are easily identifiable.

We first run the simulation for soft regulation with best recommendation. Given the qua-
dratic utility, Kiefer-Wolfowitz algorithm, and system-wide confidence level, the regulator can
easily compute best recommendation by solving the optimal control problem introduced ear-
lier. One can obtain the nominal (without noise) system dynamics to be

xðt þ 1Þ ¼ ð1� bÞð1� 4katÞxðtÞ þ b1uðtÞ:

Since the stage cost does not penalize input u, the optimal u� at stage t can be solved as fol-
lows

u�ðtÞ ¼ � ð1� bÞð1� 4katÞ
b

� �
� 1
n

X
i

xiðtÞ:

Table 2. Model parameters.

n σω θ* k a(t) c(t)

1000 200=
ffiffiffi
3

p
0 100 1/t 1/(t + 200)1/3

doi:10.1371/journal.pone.0150343.t002
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In Fig 1, we plot the efficiency after 200 iterations against different confidence levels. We
observe the efficiency increases monotonically as the confidence level increases. This result is
not surprising. As the confidence level increases, the regulator has a stronger influence on the
agents, therefore, exerting a more efficient control. Even though for each confidence level, the
regulator issues the best recommendation, the recommendation is only effective when the
agents choose to listen.

In Figs 2 and 3, we plot the efficiency against confidence level for soft regulation with crowd
recommendation. The results from Fig 1 are also included as a reference. It is remarkable that
soft regulation with crowd recommendation is as good as the one with best recommendation
for a wide range of confidence levels (from 0 to 99%). The real advantage of best recommenda-
tion only appears when the confidence level is close to 100%. However, to achieve this best rec-
ommendation or even hard regulation, the regulator needs information about utility function,
optimization algorithm, and the confidence level. This practice, despite being efficient under
the setting of complete information, is costly, impractical, and error prone in practical settings.
Especially for hard regulation, additional cost of enforcement needs to be considered.

The results in Figs 2 and 3 confirm our previous insights that the confidence level should be
set to a large value but not too close to 100%. The open loop system only reaches about 70%
optimum. The system performance is more than 90% optimal when the confidence level is
50% (i.e., the agent takes an average between its own optimization result and the recommenda-
tion). We also see a sharp decline in performance when confidence level is too close to 100%.
Beyond this “cliff,” the agents explore very little and essentially stay where they are.

Fig 1. Efficiency of soft regulation with best recommendation.

doi:10.1371/journal.pone.0150343.g001
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In Fig 4, we plot the time progressions of efficiency for different confidence levels. When
confidence level is low (β = 0 or 10%), the MSE increases (efficiency declines) before converg-
ing. This is caused by large initial step sizes. As confidence level increases, the system begins
convergence earlier. As the confidence level further increases, the system shifts from the regime
dominated by exploration to the one dominated by conformity, and the recommendation does
not have enough time to converge to optimum before agents start conforming.

In order to better understand the connections between the confidence level and the perfor-
mance that we hypothesized in the previous section and observed in the simulation results, we
now attempt to compute a closed-form expression for the system state. Recall that xi denotes
the current state of the i-th agent. The updated state xþi implied by the gradient-based update
scheme in Eq (1) is given by

xþi ¼ ð1� bÞð1� 4katÞxi þ buþ at �
1� b
ct

� ôi ð2Þ

where ô i 	 N ð0; ffiffiffi
2

p
soÞ is the effective noise resulting from computing the discrete approxi-

mation to the gradient in Eq (1). Recall that the crowd recommendation is u = ∑i xi/n. Thus,
the updated u+ of the recommendation is given by

uþ ¼ 1� 4katð1� bÞ½ �uþ at �
1� b
ct

� 1
n

X
i

ô i:

Fig 2. Efficiency of soft regulation with crowd recommendation.

doi:10.1371/journal.pone.0150343.g002
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When n� 1, the expected u(t) can be treated as a deterministic variable. When β is small,
u(t) quickly converges to θ�. Otherwise, E½uðtÞ� can be approximated as follows:

E½uðtÞ� � uðt0Þ exp �4kð1� bÞ
Z t

t0

atdt

" #
: ð3Þ

For the wisdom of crowds, this implies that a group is smart only when the population is
large (n� 1) and agents are not strongly conforming (β
 100%). Surowiecki’s book [27]
shares the same insights. Unlike the averaging method in the book, soft regulation is a continu-
ous feedback process. Even though the open loop (β = 0) system has the fastest converging rec-
ommendation, agents cannot make use of it unless they at least partially accept (β> 0). This
paradox suggests some trade-off and balancing between consensus and efficiency.

In addition, as k increases, u(t) approaches θ� faster, i.e., a more sensitive utility function
implies a more reliable recommendation. Unless an agent can estimate the curvature (*k for a
quadratic function) of the payoff accurately, it is safer to rely on the recommendation when
curvature is larger.

From Eqs (2) to (3) it follows that

E½MSEðt þ 1Þ� � 2a2t ð1� bÞ2s2
o=c

2
t þ b 2ð1� bÞð1� 4katÞ þ 1½ �uðtÞ2

1� ð1� bÞ2ð1� 4katÞ2
: ð4Þ

Fig 3. Efficiency of soft regulation with crowd recommendation (large confidence levels).

doi:10.1371/journal.pone.0150343.g003
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This approximation agrees closely with the simulation (see lines in all simulation result fig-
ures). Interested readers can find detailed derivations in S1 Appendix.

From Eq (4), it follows that MSE converges to 0 (soft regulation is optimal). Meanwhile,
when confidence level is low, i.e., β� 0 (explorers), the dependence on u(t) vanishes very
quickly, and Eq (4) can be simplified as follows:

E½MSEðt þ 1Þ� � 2a2ts
2
o=c

2
t

1=ð1� bÞ2 � ð1� 4katÞ2

and MSE monotonically decreases as β increases. On the other hand, when confidence level is
high, i.e., β� 100% (followers), the u2(t) term dominates s2

o, one can simplify Eq (4) to

E½MSEðt þ 1Þ� � b uðt0Þ exp �4kð1� bÞ
Z t

t0

atdt

" #( )2

and MSE monotonically increases as β increases. This estimation agrees well with our previous
hypotheses and simulation results (see Figs 2 to 4).

An interesting fact arises from this approximation, i.e., imperfect information is necessary
for soft regulation to add value. If the system has very low noise or noise-free, the s2

o term will
be dominated by u2(t), and an increase in β hurts performance. That is to say, for a determin-
istic process, soft regulation with crowd recommendation may not be a good mechanism for
agents to adopt.

Fig 4. Efficiency of soft regulation with crowd recommendation over time.

doi:10.1371/journal.pone.0150343.g004
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In practice, each individual may have a distinct confidence level and personal traits. Model-
ing such rich details as well as formulating related best recommendation is beyond the scope of
this work. Nevertheless, for purposes of illustration, we propose the following adaptive confi-
dence mechanism:

bðxi; uÞ ¼ e�bðxi�uÞ2 ðb > 0Þ:

The rationale for this update scheme is as follows. When an agent’s action is far away from
the recommendation, the agent is fairly skeptical. Suppose, by incorporating the recommenda-
tion, the agent’s action moves further away from the recommendation, the agent would rely
even less on the regulator. However, when the action comes closer to the recommendation,
agent is likely to be more confident about the regulator, and incorporate the recommendation
in future updates. One flaw in this adaptive mechanism is that if everyone performs the same
action in the beginning, this results in an identical confidence level β = 100% for all agents, and
the system will not move at all. This situation might be remedied with an occasional, small per-
turbation. In Fig 5, we plot two new simulation results, i.e., 1) agents have uniformly distrib-
uted (Dist.) confidence levels, and 2) agents have uniformly distributed initial confidence levels
and the confidence is adaptive (Dist.+adap.) according to the update scheme above. We also
include previous results with fixed and identical confidence level to the graph. We observe a
fairly good performance.

Fig 5. Efficiency of soft regulation with crowd recommendation over time (distributed agents).

doi:10.1371/journal.pone.0150343.g005
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Conclusion
We propose a soft regulation framework for coordinating multi-agent systems. In this setting, the
regulator’s role is to help agents learn, understand, and optimize an unknown process without
interrupting normal operations. The essence of this mechanism is to take guided decisions by
updating actions using the map xþi ¼ ð1� biÞ�xi þ biu, where �xi is the i-th agent’s own optimized
decision and u is the regulator’s crowd recommendation. Self-interested agents have the freedom
to choose to partially accept the regulator’s recommendation. Soft regulation provides a more bal-
anced coordination: Unlike hard regulation, it does not force the agents; this creates a collective
learning environment and avoids possibly erroneous mandates. On the other hand, a soft regula-
tory system is not under-regulated or uncoupled. The exploration of some agents benefits others.
Useful information is shared indirectly instead of being wasted in an asocial learning environment.

We notice the efficiency of soft regulation is impacted by the following factors:

1. Population: Because of noise, recommendation is subject to uncertainty. However, when
n� 1, the variance becomes negligible, and the recommendation becomes deterministic
(very close to mean) and accurate. This dependence on population size is intuitive: The
information aggregated from a large population should be more useful compared to the one
from a small population.

2. Process: We have proved that soft regulation with crowd recommendation preserves opti-
mality. The advantage of the mechanism, however, is especially pronounced when the sys-
tem is very noisy and the payoff function is very sensitive. A rule of thumb for the agents
would be when a large sensitivity of the process is observed (either because of high noise or
large curvature), the agents may be better off relying on the recommendation. Uncertainty
drives the system towards cooperation. Soft regulation can potentially stabilize an open loop
unstable process. This result also provides some insights on the wisdom of crowds. For
example, the average performance can outperform the best individual when the system is
very uncertain. In that sense, the “expert” knowledge may not be as useful in an emerging
industry as the collective wisdom.

3. Agent confidence level: From the mathematical proofs and simulation evidence, we conclude
that the best confidence level should be large but not too close to 100%. This is especially
true when the system is very noisy and the process is very sensitive. In such setting, agents
should put a substantial amount of trust on the regulator’s recommendations. Because of
the trade-off between consensus and efficiency, in the early stage of soft regulation, the con-
fidence level should be kept low for recommendation to quickly converge. As time proceeds,
agents can be more and more confident regarding the recommendation.

Despite the name, soft regulation has applications beyond industrial regulation. The soft
regulator module, i.e., xþi ¼ ð1� biÞ�xi þ biu, can be integrated in different control systems
and problem-solving scenarios (see Table 3). We only analyze a specific and stylized model in

Table 3. Soft regulation applications.

Action ! Utility

health behavior:
e.g., sleep habit, exercise frequency, diet, etc.

! health condition
e.g., sleep quality, BMI, etc.

operating condition:
e.g., T, P, feed ratio, flow rate, catalyst, etc.

! yield
e.g., production rate, etc.

workplace environment:
e.g., indoor temperature, lighting, etc.

! productivity
e.g., profitability, etc.

infrastructure planning:
e.g., traffic light control, hospital resource, budget allocation, etc.

! efficiency
e.g., congestion time, etc.

doi:10.1371/journal.pone.0150343.t003
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this paper to illustrate the efficacy of the mechanism. In practice, soft regulation should be
implemented and modified in a case by case manner. For example, when the regulator can
obtain more information other than the average action, it is entirely reasonable to formulate a
better recommendation based on the richer information set such as trends, histograms, etc.
The agents, instead of adjusting confidence level via the method proposed in this paper, can
also explore and compare utilities (on a much slower timescale) to adapt new confidence levels.
For a large population where centralized information collection is impractical, soft regulation
might be plausible on a peer-to-peer basis. All these possibilities will be explored and analyzed
in future work.

The medical domain is another applicable area of soft regulation. Powered by mobile
phones and wearables, researchers can now collect timely mass medical data (via Apple’s
ResearchKit [32] for example). Soft regulation is suitable in this scenario because medical
research satisfies all three features, i.e., imperfect information (unknown relationships between
patient behaviors and health conditions), weak interaction (one patient’s condition is not
affected by another’s), and bounded rationality (patients always wish to improve their own
health, however, have limited information). In addition, thanks to the convenience of mobile
devices, we expect good participation rate. A large population size further ensures the accuracy
of recommendation. Patients can optimize their own health while contributing to medical
research. Even if patients do not want to optimize themselves, medical researchers may imple-
ment the soft regulation module to do that based on data collected locally. The confidence level
can also be explicitly controlled by the service provider. Soft regulation in this setting becomes
a crowdsourcing framework. The results in this paper are expected to hold.

This work also has some implications other than our central arguments on control and reg-
ulation. It reinforces the idea that an averaged opinion can accurately predict under uncer-
tainty, i.e., the wisdom of crowds, given the population is large, independent, and relevant.
Unlike conventional takes on the wisdom of crowds, soft regulation does not stop at collecting
average information but also feeds it back to the system. This dynamical mechanism suggests
more flexible scenarios and applications.

Supporting Information
S1 Appendix. Proofs and detailed derivations. In the Appendix, we show that soft regulation
with crowd recommendation is optimal and robust when subjected to bounded noises when
0� βi< 100%. We also discuss how confidence level affects the efficiency of this mechanism.
In addition, we formulate a closed-form analytical solution for the simulation case study.
(PDF)

Acknowledgments
This work is supported in part by Columbia University.

Author Contributions
Conceived and designed the experiments: VV. Performed the experiments: YL. Analyzed the
data: YL GI VV. Wrote the paper: YL GI VV.

References
1. Gold R. The Boom: How Fracking Ignited the American Energy Revolution and Changed the World.

Simon and Schuster; 2014.

2. Bloomberg, M, Krupp, F. type; 2014. Available from: http://nyti.ms/1nEASw5.

Soft Regulation

PLOS ONE | DOI:10.1371/journal.pone.0150343 March 15, 2016 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0150343.s001
http://nyti.ms/1nEASw5


3. Krupp, F. type; 2008. Available from: http://www.strategy-business.com/article/08201?pg=all.

4. Congress U. Digital Millennium Copyright Act. Public Law. 1998;( 105-304):112.

5. Tribe LH. The “Stop Online Piracy Act” (SOPA) violates the first amendment; 2011.

6. Smith, L. Stop online piracy act. US Government. 2011;.

7. Rai AK. Intellectual property rights in biotechnology: Addressing new technology. Wake Forest L Rev.
1999; 34:827.

8. Phillips, M. type; 2012. Available from: http://www.whitehouse.gov/blog/2012/01/14/obama-
administration-responds-we-people-petitions-sopa-and-online-piracy.

9. Higgins, P. type; 2014. Available from: http://gizmodo.com/how-drm-harms-our-computer-security-
1572826413.

10. Han J, Li M, Guo L. Soft control on collective behavior of a group of autonomous agents by a shill
agent. Journal of Systems Science and Complexity. 2006; 19(1):54–62. doi: 10.1007/s11424-006-
0054-z

11. Zhang H, Parkes DC. Value-Based Policy Teaching with Active Indirect Elicitation. In: AAAI. vol. 8;
2008. p. 208–214.

12. Thaler RH, Sunstein CR. Libertarian paternalism. American Economic Review. 2003; p. 175–179. doi:
10.1257/000282803321947001

13. Thaler RH, Sunstein CR. Nudge: Improving decisions about health, wealth, and happiness. Yale Uni-
versity Press; 2008.

14. Brotman, B. type; 2014. Available from: http://articles.chicagotribune.com/2014-03-03/features/ct-
energy-comparisons-brotman-talk-0303-20140303_1_energy-hog-energy-efficiency-comed.

15. Kandel E, Lazear EP. Peer pressure and partnerships. Journal of political Economy. 1992; p. 801–817.
doi: 10.1086/261840

16. Aharony N, PanW, Ip C, Khayal I, Pentland A. Social fMRI: Investigating and shaping social mecha-
nisms in the real world. Pervasive and Mobile Computing. 2011; 7(6):643–659. doi: 10.1016/j.pmcj.
2011.09.004

17. Mani A, Rahwan I, Pentland A. Inducing peer pressure to promote cooperation. Scientific reports. 2013;
3. doi: 10.1038/srep01735

18. Shmueli E, Singh VK, Lepri B, Pentland A. Sensing, Understanding, and Shaping Social Behavior.
Computational Social Systems, IEEE Transactions on. 2014;. doi: 10.1109/TCSS.2014.2307438

19. Krishnamurthy V, Poor HV. A Tutorial on Interactive Sensing in Social Networks. Computational Social
Systems, IEEE Transactions on. 2014;. doi: 10.1109/TCSS.2014.2307452

20. Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K, FeldmanMW, et al. Why copy others? Insights
from the social learning strategies tournament. Science. 2010; 328(5975):208–213. doi: 10.1126/
science.1184719 PMID: 20378813

21. Abbe EA, Khandani AE, Lo AW. Privacy-preserving methods for sharing financial risk exposures. The
American Economic Review. 2012; 102(3):65–70. doi: 10.1257/aer.102.3.65

22. Carver CS, Scheier MF. Control theory: A useful conceptual framework for personality—social, clinical,
and health psychology. Psychological bulletin. 1982; 92(1):111. doi: 10.1037/0033-2909.92.1.111
PMID: 7134324

23. Leveson N. Engineering a safer world: Systems thinking applied to safety. Mit Press; 2011.

24. TrochimWM, Cabrera DA, Milstein B, Gallagher RS, Leischow SJ. Practical challenges of systems
thinking and modeling in public health. American Journal of Public Health. 2006; 96(3):538. doi: 10.
2105/AJPH.2005.066001 PMID: 16449581

25. PowersWT. Feedback: beyond behaviorism stimulus-response laws are wholly predictable within a
control-system model of behavioral organization. Science. 1973; 179(4071):351–356. doi: 10.1126/
science.179.4071.351 PMID: 4682961

26. De Condorcet N. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité
des voix. Cambridge University Press; 2014.

27. Surowiecki J. The wisdom of crowds. Anchor; 2005.

28. Sunstein C, Hastie R. Wiser: Getting Beyond Groupthink to Make Groups Smarter. Harvard Business
Review Press; 2014.

29. Kiefer J, Wolfowitz J, et al. Stochastic estimation of the maximum of a regression function. The Annals
of Mathematical Statistics. 1952; 23(3):462–466. doi: 10.1214/aoms/1177729392

30. Kennedy J. Particle swarm optimization. In: Encyclopedia of Machine Learning. Springer; 2010. p.
760–766.

Soft Regulation

PLOS ONE | DOI:10.1371/journal.pone.0150343 March 15, 2016 15 / 16

http://www.strategy-business.com/article/08201?pg�=�all
http://www.whitehouse.gov/blog/2012/01/14/obama-administration-responds-we-people-petitions-sopa-and-online-piracy
http://www.whitehouse.gov/blog/2012/01/14/obama-administration-responds-we-people-petitions-sopa-and-online-piracy
http://gizmodo.com/how-drm-harms-our-computer-security-1572826413
http://gizmodo.com/how-drm-harms-our-computer-security-1572826413
http://dx.doi.org/10.1007/s11424-006-0054-z
http://dx.doi.org/10.1007/s11424-006-0054-z
http://dx.doi.org/10.1257/000282803321947001
http://articles.chicagotribune.com/2014-03-03/features/ct-energy-comparisons-brotman-talk-0303-20140303_1_energy-hog-energy-efficiency-comed
http://articles.chicagotribune.com/2014-03-03/features/ct-energy-comparisons-brotman-talk-0303-20140303_1_energy-hog-energy-efficiency-comed
http://dx.doi.org/10.1086/261840
http://dx.doi.org/10.1016/j.pmcj.2011.09.004
http://dx.doi.org/10.1016/j.pmcj.2011.09.004
http://dx.doi.org/10.1038/srep01735
http://dx.doi.org/10.1109/TCSS.2014.2307438
http://dx.doi.org/10.1109/TCSS.2014.2307452
http://dx.doi.org/10.1126/science.1184719
http://dx.doi.org/10.1126/science.1184719
http://www.ncbi.nlm.nih.gov/pubmed/20378813
http://dx.doi.org/10.1257/aer.102.3.65
http://dx.doi.org/10.1037/0033-2909.92.1.111
http://www.ncbi.nlm.nih.gov/pubmed/7134324
http://dx.doi.org/10.2105/AJPH.2005.066001
http://dx.doi.org/10.2105/AJPH.2005.066001
http://www.ncbi.nlm.nih.gov/pubmed/16449581
http://dx.doi.org/10.1126/science.179.4071.351
http://dx.doi.org/10.1126/science.179.4071.351
http://www.ncbi.nlm.nih.gov/pubmed/4682961
http://dx.doi.org/10.1214/aoms/1177729392


31. Teel AR. Discrete Time Receding Horizon Optimal Control: Is the Stability Robust? In: Optimal Control,
Stabilization and Nonsmooth Analysis. Springer; 2004. p. 3–27.

32. Apple. ResearchKit for Developers; 2015. Available from: https://developer.apple.com/researchkit/.

Soft Regulation

PLOS ONE | DOI:10.1371/journal.pone.0150343 March 15, 2016 16 / 16

https://developer.apple.com/researchkit/

