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Abstract

In cell culture process development, we rely largely on an iterative, one-factor-at-a-time

procedure based on experiments that explore a limited process space. Design of exper-

iments (DoE) addresses this issue by allowing us to analyze the effects of process

inputs on process responses systematically and efficiently. However, DoE cannot be

applied directly to study time-varying process inputs unless an impractically large num-

ber of bioreactors is used. Here, we adopt the methodology of design of dynamic

experiments (DoDE) and incorporate dynamic feeding profiles efficiently in late-stage

process development of the manufacture of therapeutic monoclonal antibodies. We

found that, for the specific cell line used in this article, (1) not only can we estimate the

effect of nutrient feed amount on various product attributes, but we can also estimate

the effect, develop a statistical model, and use the model to optimize the slope of time-

trended feed rates; (2) in addition to the slope, higher-order dynamic characteristics of

time-trended feed rates can be incorporated in the design but do not have any signifi-

cant effect on the responses we measured. Based on the DoDE data, we developed a

statistical model and used the model to optimize several process conditions. Our effort

resulted in a tangible improvement in productivity—compared with the baseline pro-

cess without dynamic feeding, this optimized process in a 200-L batch achieved a 27%

increase in titer and > 92% viability. We anticipate our application of DoDE to be a

starting point for more efficient workflows to optimize dynamic process conditions in

process development.

1 | INTRODUCTION

It is one of the major challenges faced by the biopharmaceutical

industry to achieve desired productivity and product quality consis-

tently.1 Therapeutic monoclonal antibodies (mAbs) are typically manu-

factured using Chinese hamster ovary (CHO) cell cultures in a

controlled fed-batch bioreactor environment. Process conditions and

the feeding strategy for nutrient supplementation critically affect the

growth and metabolic behaviors of cells, which in turn determine

the final product titer and quality. While we still rely largely on an iter-

ative, one-factor-at-a-time (OFAT) procedure based on experiments

that explore a limited process space, model-based process optimiza-

tion is widely adopted in process development in other industries2

and, with an increasing prevalence, in developing bioprocesses.3–7

Response surface methodology (RSM) models, for example, are suit-

able for model-based cell culture process optimization as they can be

used to predict the final productivity or product quality responses

based on process inputs such as temperature, pH, and other process

conditions.6,8 Creating an RSM model requires data from properly

designed experiments such that the effects of process inputs on pro-

ductivity and product quality responses can be estimated

systematically.
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Design of experiments (DoE)9 is suitable for designing experi-

ments systematically with static process conditions that vary only

across batches, not in time. Typically, a design consists of several fac-

tors, and their levels are varied simultaneously. Each factor represents

a process condition (or configuration) of interest and varies between

low (�1) and high (þ1) levels. As orthogonality and statistical criteria

such as D-optimality are often satisfied in a DoE, the resulting design

can be used to explore an experimental space more efficiently than an

iterative, OFAT design, given the same constraint of resources, for

example, a limited number of batches.

The conventional DoE approach, however, is not capable of

describing time-varying, dynamic process conditions. A naïve modifica-

tion would be creating multiple variable–time composite factors

(e.g., pH–Day 0, pH–Day 1, pH–Day 2, etc.); however, not only does

this design violate the orthogonality requirement, but the design can

also become impossibly large and exceed the bioreactor limit of a typi-

cal experiment run in a well-equipped process development labora-

tory. Alternatively, if we treat a time-dynamic profile as a categorical

factor and consider, for example, only linear trajectories, we can cre-

ate a design of 32 ¼9 potential trajectories that start low/mid/high

and end low/mid/high. Adding three center points will result in a total

of 27 runs (each center point is replicated for any given categorical

level to maintain design balance). If we add more factors, then the

already large number of runs will quickly become even larger and

impractical to implement.

In Section 2, we describe the design of dynamic experiments

(DoDE) approach10 to designing experiments with time-varying

process inputs efficiently (see References 6,10–12 for applications

of DoDE to different processes). This approach allows us to study

the effects of both static process inputs (e.g., constant tempera-

ture and pH setpoints) and dynamic process inputs (e.g., feed rates)

in an orthogonal cell culture process development experiment,

while keeping the number of conditions manageable. In this work,

we focus on analyzing the time-varying rates of cell-specific feed-

ing in fed-batch processes.

In a typical fed-batch process, supplemental nutrients are added

to the bioreactor in either boli or a continuous flow because nutrients

from the basal medium alone may be depleted. Both the composition

and the added amount of the feed medium can affect productivity

and product quality.13–15 In this work, we focus only on the optimiza-

tion of the continuous feed rates. There are several ways of determin-

ing the amount to feed each day. Under cell-specific feeding, the

amount of a nutrient feed medium added into a bioreactor is propor-

tional to the current viable cell concentration (VCC) based on a pre-

determined ratio—cell-specific feed rate (CSFR).16 This approach

allows one to account for the increasing or decreasing demand for

nutrients as cells grow and die. An optimal CSFR setpoint is crucial to

the success of a process that uses cell-specific feeding. Normally, the

CSFR setpoint of a process remains constant based on the assumption

that each cell consumes nutrients at a constant rate throughout a fed-

batch process. However, the metabolism of cells can shift substan-

tially over the course of a fed-batch process, particularly as cell viabil-

ity declines. Therefore, the optimal CSFR setpoint should account for

such shifts. Optimizing a time-varying CSFR setpoint trend (instead of

a constant CSFR setpoint) is the focus of this article.

The remainder of this article is organized as follows. In Section 2, we

review the DoDE methodology and describe the experimental details. In

Section 3, we discuss the designs, data, and models of two small-scale

experiments and the optimization of process conditions to improve prod-

uct titer. Specifically, we estimated the effects, developed a statistical

model, and used the model to optimize both the average amount and the

slope of time-trended CSFRs; we verified the optimized process in a

large-scale experiment and saw improved titer and cell viability; in addi-

tion to the slope, the curvature of time-trended CSFRs was also incorpo-

rated in a DoDE and found not have any significant effect on the

responses we measured. In Section 4, we summarize our findings and dis-

cuss potential challenges and future direction.

2 | METHODS

The DoDE methodology introduced in Reference 10 is used in this

article to design experiments with time-varying CSFR setpoints. Each

CSFR trend can be described by one or more DoDE factors, depend-

ing on their respective levels. DoDE factors follow the same format as

DoE factors where each factor's (coded) level falls between �1 (low

level) and þ1 (high level).

Orthogonal basis functions of time represent different and inde-

pendent time-varying components of a CSFR trend. The absolute

value of each DoDE factor level represents the “weight” of its corre-

sponding basis function. A defined CSFR trend is the weighted sum of

these basis functions. Specifically, the following three shifted Legen-

dre polynomials form the bases of a quadratic CSFR trend:

P0 τð Þ¼1;P1 τð Þ¼�1þ2τ; P2 τð Þ¼1�6τþ6τ2,

where Pi denotes an ith-order Legendre polynomial of time (bounded

between �1 and þ1); τ denotes the normalized time

(bounded between 0 and 1). Higher-order Legendre polynomials are

also available to describe more complex trends. The Legendre polyno-

mials are orthogonal to each other according to their zero inner

products.

ð1
0
Pi τð ÞPj τð Þdτ¼0 i≠ jð Þ:

In other words, when a time-varying trend consists of multiple

Legendre polynomials, one can adjust the component of the trend

that corresponds to a specific Legendre polynomial independently and

analyze its effect on the responses in isolation.

A normalized time-varying CSFR trend is represented as follows:

z τð Þ¼ x1P0 τð Þþx2P1 τð Þþx3P2 τð Þ,

where z is the normalized CSFR trend; x1, x2, and x3 are the DoDE fac-

tor levels (or weights). Note that in Section 3, x1, x2, and x3 are
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replaced by the corresponding factor names (e.g., CSFR0, CSFR1, and

CSFR2). z should also be bounded by �1 (the lowest allowed CSFR)

and þ1 (the highest allowed CSFR); however, with �1≤Pi ≤1 and

�1 ≤ xi ≤1, it is not guaranteed that z also falls within �1. For exam-

ple, if x1 ¼ x2 ¼ x3 ¼1, z 1ð Þ¼1þ1þ1¼3>1. A remedy without

changing the relative level magnitudes of the design is to scale xi by

the number of factors such that zj j≤1. In the same example, the

scaled factors are x1 ¼ x2 ¼ x3 ¼ 1
3 when the three factor levels are

high. Typically, the execution of a theoretical CSFR trend, z, in an

experiment requires that z is discretized into finite steps. An operator

or automation program then updates the feed rate periodically.

Designing an experiment using DoDE is mostly identical to

designing an experiment using DoE as follows:

1. Determine the static DoE factors and the DoDE factors of a study.

a. Determine the number of feasible runs (same as DoE).

b. Determine the lower and upper limits of the static conditions

described by the DoE factors and translate them into coded

factor levels (same as DoE).

c. Determine the lower and upper limits of the time-varying con-

ditions (e.g., CSFR) described by the DoDE factors and translate

them into coded factor levels.

d. Determine the capacity to adjust the level of any time-varying

conditions: e.g., linear trajectories or quadratic trajectories;

coarse discretization (updating once per batch) or fine discreti-

zation (updating daily).

e. Select a suitable design (e.g., full factorial, fractional factorial,

central composite, or optimal designs) based on the number of

bioreactors that can feasibly be run per study (same as DoE).

2. Execute the study and collect the data (same as DoE).

3. Perform model/variable selection to identify the main and interac-

tion effects for analysis of variance (ANOVA) and creating a linear

model for each response variable (same as DoE).

a. Optimize both static and time-varying conditions subject to con-

straints based on the models developed from the last step (same

as DoE except for the additional constraint of
P
i
xij j≤1 in DoDE).

b. Translate the optimized, coded DoE factor levels into actual

conditions (same as DoE).

c. Translate the optimized, coded DoDE factor levels into discrete

time steps.

The effect of dynamic CSFR strategies on product titer is estimated

and analyzed in two sequential DoDE studies in this article. The objec-

tive of both studies is to maximize product titer as part of a fed-batch

cell culture process development campaign. The first study serves as an

exploratory exercise to screen CSFR-related factors and other static

operating conditions. The second study builds upon the insights from

the first study to validate and fine-tune the optimal CSFR strategy.

Analyzing the data from a DoDE study is identical to analyzing

the data from a conventional DoE study. Common techniques such as

ANOVA also apply to DoDE. In the bioreactor studies in the next sec-

tion, we employed RSM to optimize CSFR and other process

conditions.

y¼ yþ c1x1þc2x2þc3x3þc11x
2
1þ c22x

2
2þc33x

2
3þc12x1x2þc23x2x3

þc13x1x3,

where y represents the response variable; y is the fixed effect; c is the

coefficient of a main or interaction effect estimated based on data.

Only quadratic main effects and two-way interactions are included in

the equation above as higher-order effects are relatively rare (i.e., the

hierarchical ordering principle).

The factors are selected in an RSM model based on standard factor

selection criteria—statistical significance of the effects, adjusted R2, pre-

diction R2, and preservation of the factor hierarchy (e.g., if interaction

x1x2 is selected in a model, their corresponding main effects, x1 and

x2, then must also be selected even if they are not statistically signifi-

cant). All RSM models in this article were created in Design-Expert

10.0.3 (Stat-Ease, Minneapolis, MN). We use adjusted R2 (R2
adj) as the

selection criterion in Design-Expert to select the effect terms in all

RSM models, while preserving the hierarchy of factors. Further refine-

ment of effect term selection may be performed if needed.

The optimization of process conditions follows a standard con-

strained optimization procedure where one response variable (e.g., the

final titer) is maximized (or minimized) subject to several constraints. All

model-based process condition optimizations were solved using the

Solver add-on in Microsoft Excel (Microsoft, Redmond, WA).

All DoDE experiments were carried out in an Ambr250 bioreactor

system (Sartorius Stedim, Göttingen, Germany), and all large-scale

experiments were carried out in a 200-L single-use bioreactor system

(Sartorius Stedim, Göttingen, Germany). A CHO K1 glutamine synthe-

tase (GS)–knockout cell line expressing an IgG1 monoclonal antibody

was used. Proprietary and chemically defined seed expansion medium,

production basal medium, and production feed medium were used. The

initial working volume was 200 mL (Ambr250 DoDE batches) or 160–

170 L (large-scale batches). The target seeding density was 18 million

cells/mL. The pH was set between 6.9 ± 0.1 and 7.1 ± 0.1. The temper-

ature was kept between 32�C and 34�C. The agitation rate was deter-

mined for different scales based on a constant power per unit volume

value (P/V), and the gas flow was determined similarly based on a con-

stant volume of air sparged per unit volume per minute (VVM). The

reactors were agitated at 435 rpm (DoDE batches) or 83 rpm (large-

scale batches). The dissolved oxygen (DO) was controlled at 50%. The

feed rate of each reactor was determined based on the specified CSFR

and the VCC measured every day in the equation below.

Ffeed ¼CSFR�xv �V,

where Ffeed (mL/h) is the volumetric flowrate of the nutrient feed,

CSFR (pL/cell/min) is the specified CSFR, xv (cells/mL) is the measured

VCC, and V (L) is the working volume of the bioreactor. A 400 g/L glu-

cose solution was used to provide supplemental glucose as needed.

All experiments were run for 12days.

A sample of the culture was taken daily to measure the antibody

titer, cell densities, and metabolite concentrations in each bioreactor.

The antibody titer was measured using an Agilent 1290 Infinity II LC

system (Agilent, Santa Clara, CA). The cell densities and cell culture

LUO ET AL. 3 of 10
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viability were measured using a Vi-Cell XR cell counter (Beckman,

Indianapolis, IN). The metabolite concentrations were measured using

a BioProfile FLEX2 analyzer (Nova Biomedical, Waltham, MA) or a

Cedex Bio HT analyzer (Roche, Mannheim, Germany).

3 | RESULTS AND DISCUSSION

Two Ambr250 studies—Study A and Study B—were designed using

the DoDE methodology and executed consecutively to generate

the data for the RSM model development and model-based

optimization.

In the initial Ambr250 study (Study A), a DoDE was created to

estimate the effects of dynamic CSFR, temperature, and pH on the

end-of-run (EoR) mAb titer and cell viability as those process inputs

are known to affect cell growth and protein production.17–20 Table 1

shows both the design and the measured responses. It is a 24 full-fac-

torial design with four center points (the design is orthogonal). Each

CSFR trend was dynamic in the experiment and described by two

DoDE factors—CSFR0 for the average feed rate and CSFR1 for the

speed of feed rate change or the slope (the trend was bounded

between CSFRmin ¼0:0002 pL/cell/min and CSFRmax ¼0:0004 pL/

cell/min based on the historical, static CSFRs used in the previous,

iterative process development studies) in the equations below. DoDE

was meant for further “fine-tuning” of the process, and the CSFR

bounds were determined such that the conditions tested in this study

would not result in a complete batch failure due to over- or under-

feeding.

z τð Þ¼CSFR0P0 τð ÞþCSFR1P1 τð Þ¼CSFR0þCSFR1 �1þ2τð Þ,

τ¼ t
12

,

where �1≤ z≤ 1 and 0≤ τ ≤1 represent the normalized CSFR and

time; �1≤CSFR0 ≤1 and �1≤CSFR1 ≤1 are the two (coded) DoDE

factors. The CSFR at any time point, z τð Þ, is a linear combination of

P0 τð Þ, which is a constant, and p1 τð Þ, which is an either rising or declin-

ing slope. We can obtain the simplest set of DoDE conditions by using

at least two CSFR factors—CSFR0 (average) and CSFR1 (slope).

Specifically, the normalized CSFR is defined in the scaling equa-

tion below. To obtain a CSFR curve based on the DoDE factor levels,

one calculates the normalized CSFR curve, z τð Þ, as a function of τ and

recovers CSFR to its original scale based on the normalized values.

z¼ CSFR� 1
2 CSFRmin þCSFRmaxð Þ

CSFRmax � 1
2 CSFRmin þCSFRmaxð Þ :

CSFR is normalized between CSFRmin and CSFRmax , and t is nor-

malized by the duration of each batch (i.e., 12 days). To ensure z is

bounded by �1, CSFR0 and CSFR1 were scaled such that the space of

allowable CSFR conditions in this design was bounded by

�0:5≤CSFR0 ≤0:5 and �0:5≤CSFR1 ≤0:5. Alternatively, one can

assign CSFR0 and CSFR1 the coded levels of �1,0ð Þ and 0,�1ð Þ to

cover a larger space while still satisfying the constraint that z is

bounded by �1. Due to the limited number of runs (20 bioreactors),

we did not include such axial points in Study A.

Below is a step-by-step breakdown of translating the coded CSFR

factor levels into the actual CSFR levels using Run 6 in Table 1 as an

example:

1. Calculate the normalized time series.

τ¼ t
12

¼ 0,1,…,11,12½ �
12

¼ 0,0:0833,…,0:917,1½ �:

2. Calculate the normalized CSFR.

z¼CSFR0þCSFR1 �1þ2τð Þ¼0:5þ �0:5ð Þ� �1þ2τð Þ
¼ 1,0:917,…,0:0833,0½ �:

3. Substitute z, CSFRmin , and CSFRmax in the scaling equation to cal-

culate the actual CSFR levels.

CSFR¼ z� CSFRmax �1
2

CSFRmin þCSFRmaxð Þ
� �

þ1
2

CSFRmin þCSFRmaxð Þ

¼ z� 0:0004�1
2

0:0002þ0:0004ð Þ
� �

þ1
2

0:0002þ0:0004ð Þ
¼ 0:0004,0:000392,…,0:000308,0:0003½ �:

TABLE 1 The design and responses of Study A.

Run order CSFR0 CSFR1 T pH Titer (g/L) Via (%)

1 0.5 0.5 1 �1 6.71 69.93

2 �0.5 �0.5 1 1 6.58 82.33

3 �0.5 0.5 �1 �1 5.88 75.16

4 0.5 0.5 �1 �1 5.34 74.71

5 0 0 0 0 7.23 81.25

6 0.5 �0.5 �1 �1 5.12 70.78

7 0.5 0.5 �1 1 6.53 79.35

8 0.5 �0.5 �1 1 6.48 76.99

9 �0.5 �0.5 �1 1 6.34 84.84

10 �0.5 0.5 �1 1 5.76 87.44

11 0 0 0 0 6.57 79.40

12 0.5 �0.5 1 �1 6.37 59.02

13 �0.5 0.5 1 1 6.52 81.98

14 0 0 0 0 7.38 80.27

15 �0.5 �0.5 1 �1 6.20 58.20

16 0 0 0 0 6.48 76.17

17 �0.5 �0.5 �1 �1 5.68 74.37

18 0.5 0.5 1 1 8.34 84.21

19 0.5 �0.5 1 1 8.35 77.16

20 �0.5 0.5 1 �1 6.03 76.18
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The temperature setpoint was static and described by a conven-

tional DoE factor—T (bounded between low temperature at

Tlow ¼32�C and high temperature at Thigh ¼34�C); the pH setpoint

was also static and described by another conventional DoE factor—

pH (bounded between low pH at pHlow=6.9 and high pH at

pHhigh=7.1). The temperature and pH bounds were determined using

the historical data from the previous development batches. All the

factor levels in Table 1 are dimensionless, coded levels. All the CSFR

trends are visualized in Figures 1 and 2. The change of CSFR is pro-

grammed in an Ambr250 system as a discrete event. In Study A, it

was executed such that the CSFR changed once during each batch on

Day 5—a coarse discretization of the smooth, theoretical trends in

Figure 1, but the discretization does not affect the interpretation of

results as the optimized CSFR trend was executed using the same

discretization method. The response variables in Table 1 are the EoR

HPLC titer (Titer) and the EoR viability (Via).

Based on the factor selection methodology described previously,

we created the titer and viability models (i.e., Model A) as follows.

Titer¼6:39þ0:53�CSFR0þ0:50�Tþ0:47�pHþ0:58�CSFR0

�Tþ0:60�CSFR0�pH R2
adj ¼0:88

� �
:

Via¼75:79�3:54�CSFR0þ5:66�CSFR1�2:16�Tþ6:00�pH
þ3:24�CSFR1�T�2:74�CSFR1�pHþ1:80�T

�pH R2
adj ¼0:84

� �
:

The R2
adj value of each model is provided in parentheses. The lack

of fit (LoF) p-values are 0.974 (not significant) for the titer model and

0.272 (not significant) for the viability model. An LoF that is not signif-

icant indicates that the corresponding model has represented all the

non-random information in the data adequately.

In the titer model, all the main effects are positive—that is, the

higher the CSFR, temperature, or pH, the higher the final titer. In addi-

tion, the average CSFR (CSFR0) also has positive interactions with

temperature and pH. In other words, when temperature and pH are

higher, the positive effect from the average CSFR is stronger. Lastly,

the effect of the slope of CSFR (CSFR1) on the final titer is not signifi-

cant hence not included in the titer model.

In the viability model, the effect of the average CSFR on viability is

negative—while a higher CSFR is correlated with a higher titer, it is also

correlated with lower viability. In addition, the slope of CSFR has a sig-

nificant, strong, and positive effect on viability. This positive effect

implies that a rising CSFR trend is associated with higher viability. Even

though there are a few negative main and interaction effects in the

model, the strongest among them are the positive effects from the

slope of CSFR and the pH setpoint. Therefore, we can expect a rising

CSFR trend and a higher pH to correlate strongly with higher viability.

The optimization problem and results are listed in Table 2. The

optimization problem is to maximize the final titer while maintaining

the final viability above 80%. CSFR0 ¼0:5, T¼1, and pH¼1 form the

optimal condition that maximizes titer while satisfying the viability

constraint. CSFR1 is a free variable as it is not part of the titer model.

That is to say, CSFR1 can take any value within �0:5 without affecting

F IGURE 1 Theoretical CSFR trends in Study A. “BR” stands for
“bioreactor” and is numbered according to the Run numbers in
Table 1.

F IGURE 2 CSFR trends executed in Study A.

TABLE 2 The optimization problem and results of Study A.

Optimization problem

Objective Maximize Titer

Constraints �0:5≤CSFR0,CSFR1 ≤0:5

�1≤ T,pH≤1

Via≥80%

Results

CSFR0 CSFR1 T pH

0.5 0.5 1 (or 34�C) 1 (or 7.1)

Titer (prediction) Via (prediction)

8.21 ± 0.371 g/L (82.7 ± 4.67) %
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the final titer. The final CSFR1 was selected to be 0.5 as it both sat-

isfies the viability constraint and maximizes viability. The 95% confi-

dence intervals of the model-predicted responses were estimated and

included. This optimized condition coincides with the condition used

in Bioreactor/Run 18 in Table 1.

We tested the optimized condition in a 200-L process (Batch 3)

and compared its titer and viability trends with two previous 200-L

batches (Batch 1 and Batch 2) of the baseline process without

dynamic feeding (Figures 3 and 4). Specifically, in Batch 1 and Batch

2, CSFR, temperature, and pH were kept at 0.0003 pL/cell/min, 33�C,

and 6.95 respectively. The optimized condition in Batch 3 resulted in

a 27% increase in the EoR titer, 3 days shorter to reach the previous

EoR titer, and greater-than 92% viability at the end of the batch. This

improvement in productivity and growth is unlikely due to batch-

to-batch variability as the differences in titer and viability between

Batch 1 and Batch 2 are small compared with the differences

between the baseline condition (Batch 1 and Batch 2) and the opti-

mized condition (Batch 3). The model overestimated the EoR titer by

1.3g/L. The model parameters were estimated using the data from

small-scale Ambr250 batches, and the scale-to-scale variability could

contribute to the observed bias between model prediction and mea-

surement. In addition, the intrinsic complexity of cell culture processes

introduces additional challenges in creating an accurate and generaliz-

able model. Nevertheless, we can still attribute the substantial increase

in titer primarily to the changes in CSFR, temperature, and pH.

We created a second DoDE to study any additional effects of

the shape of a CSFR trend on productivity. In this Ambr250 study

(Study B), we used three DoDE factors—CSFR0 and CSFR1 in Study

B are identical to CSFR0 and CSFR1 in Study A; CSFR2 in the equation

below represents the weight of the quadratic shifted Legendre poly-

nomial, P2, in the CSFR trend.

z τð Þ¼CSFR0P0 τð ÞþCSFR1P1 τð ÞþCSFR2P2 τð Þ
¼CSFR0þCSFR1 �1þ2τð ÞþCSFR2 1�6τþ6τ2

� �
,

where CSFR0, CSFR1, and CSFR2 were scaled by the number of fac-

tors to prevent CSFR from exceeding its bounds. The temperature

and pH setpoints in Study B were identical to the optimized condi-

tions from Study A (34�C and 7.1 pH). Each CSFR trend was bounded

between CSFRmin ¼0:0002 pL/cell/min and CSFRmax ¼0:0005 pL/

cell/min. The CSFR bounds were shifted such that the center point

coincides with the optimal average CSFR from Study A.

We formulated a 23 central composite design with six face-

centered axial points and six center points in this study to capture any

nonlinear effects (the design is orthogonal). We included axial points

in Study B to study any higher-order effects or interactions that were

not captured in the analysis of Study A. All the CSFR trends are visual-

ized in Figures 5 and 6. The number of discretization points was

increased from one in Study A to 12 in Study B, that is, CSFR changed

once a day. The response variables in Table 3 are the EoR HPLC titer

(Titer), the EoR viability (Via), and, additionally, the EoR N-linked man-

nose-5 glycan (Man5). Man5 was selected as an additional response

variable to illustrate any potential effect of feeding on antibody glyco-

sylation as the glycoform is influenced by process conditions and can

affect the in vivo function of an antibody.21

The models (i.e., Model B) are shown below.

Titer¼6:80þ1:11�CSFR0�0:44�CSFR2
0 R2

adj ¼0:90
� �

,

Via¼85:56�3:40�CSFR0þ3:51�CSFR1�7:59

�CSFR2
0 R2

adj ¼0:88
� �

,

Man5¼4:28þ0:99�CSFR0 R2
adj ¼0:54

� �
:

The LoF p-values are 0.747 (not significant) for the titer model,

0.0201 (significant) for the viability model, and 0.223 (not significant)

F IGURE 3 Comparison of titer from the baseline condition (Batch

1 and Batch 2) and the optimized condition (Batch 3).

F IGURE 4 Comparison of viability from the baseline condition
(Batch 1 and Batch 2) and the optimized condition (Batch 3).
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for the Man5 model. The significant LoF indicates that some non-

random information in the viability data has not been represented

by the model; however, we were not able to select another set of

effect terms or a different factor transformation (e.g., logit transfor-

mation) that returned a not significant LoF. The R2
adj value of the

Man5 model is low. We could improve the accuracy of the Man5

model to R2
adj ¼0:84 by including CSFR1, CSFR0�CSFR1, CSFR2

0,

CSFR2
1, and CSFR0�CSFR2

2; however, the prediction R2 would drop

even lower from 0.23 to 0.051. We selected the Man5 model

shown above as it is more “robust” even though it is less accurate

than the high-order, more complex version. That said, the selection of

the Man5 model does not affect the optimization results presented

later.

The general observations from Study A still hold—that is, CSFR0

has a positive effect on titer and a negative effect on viability; CSFR1

does not have a significant effect on titer but has a positive effect on

viability. We estimated several quadratic effects due to the inclusion

of the axial points—CSFR0 shows negative quadratic effects on both

titer and viability. Lastly, CSFR0 has a positive effect on Man5.

The third factor, CSFR2, was found not to have any significant

effect on titer, viability, or Man5. In other words, the zeroth-order

(CSFR0) and first-order (CSFR1) properties of a CSFR trend contain

sufficient variations associated with the responses; the marginal effect

from any higher-order property is minimal. While it is still possible that

quadratic or higher-order feed rate curves may be useful, describing

feed rates with two DoDE factors is practical given the resource

limitations.

The coefficients of Model A and Model B suggest a common trend

that the average CSFR (CSFR0) has a positive effect on titer and a neg-

ative effect on viability while the slope of CSFR (CSFR1) has no signifi-

cant effect on titer and a positive effect on viability. Specifically in this

process, one needs to balance the opposite effects on titer and viabil-

ity from CSFR0—under-feeding could lead to a lower yield, and over-

feeding could lead to an early termination of the batch due to lower

viability. To counter the negative effect on viability, one can feed the

culture in increasing CSFRs to ensure viability above a certain value

without affecting the final titer. The balancing of these trade-offs is

reflected in the optimization problems in a quantitative and precise

way by specifying numeric optimization objectives and constraints.

We formulated the following optimization problem to maximize

titer while maintaining high viability and low Man5. We included the

5% Man5 upper bound as an additional constraint in Study B to illus-

trate the feasibility of maximizing productivity while meeting certain

product quality requirements. The optimized CSFR in Table 4 is again

a trend that increases linearly over time (like the optimized trend from

Study A in Table 2). However, this optimized trend did not lead to a

higher model-predicted titer. The maximized titer predicted by Model

B is 0.84 g/L lower than the maximized predicted titer based on the

results from Study A. In addition, the 95% confidence intervals of the

two titer predictions do not overlap, implying that the difference is

substantial (non-overlapping 95% confidence intervals of the means

are sufficient to indicate that the difference is statistically significant

given a significance level of 0.05 or lower but we did not estimate the

actual p-value).

We evaluated the generalizability of the two models, which were

created from the two experiments separately, by predicting Study B's

responses using Model A. In other words, we tested Model A using an

independent dataset. Factor levels of CSFR0 and CSFR1 in Study B

were transformed such that they represent the equivalent levels

defined in Study A, which has a different set of CSFRmin and

CSFRmax . Factor levels of T and pH were fixed at þ1 as the tempera-

ture and pH levels were identical to the high levels in Study A. Study

B's measurements and Model A's predictions of the EoR titer and via-

bility are shown in Figures 7 and 8. We did not repeat the analysis in

reverse and predict Study A's responses using Model B as Model B

does not contain temperature or pH as inputs.

F IGURE 6 CSFR trends executed in Study B.

F IGURE 5 Theoretical CSFR trends in Study B. “BR” stands for
“bioreactor” and is numbered according to the Run numbers in
Table 3.
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Model A overestimated Study B's EoR titer by 1.48 g/L on aver-

age. On the other hand, the measured and predicted values are

strongly correlated with Pearson r2 ¼0:832. This result suggests that

Model A can explain Study B's titer qualitatively—the model can accu-

rately predict whether a condition results in a higher (or lower) titer

than another condition, but not the actual titer. One could potentially

improve Model A's prediction accuracy by reducing the fixed effect.

Such a bias resembles the over-prediction of the EoR titer in the

200-L testing experiment. Other contributions to the bias are

the inherent batch-to-batch variability between Study A and Study B

and a lower initial VCC used in Study B. In addition, CSFR was chan-

ged on Day 5 in Study A and changed daily in Study B due to different

discretization methods used to implement the CSFR curves in the

Ambr250 system. Such a difference could also potentially contribute

to the observed prediction errors. Nevertheless, the results imply that

the strong effect of the average CSFR (CSFR0) on titer remains

unchanged in Study B. Model A underestimated viability in Study B by

4.81% on average (the measured and predicted values are moderately

correlated with Pearson r2 ¼0:349).

The results above highlight the strengths and limitations of DoE/

DoDE-based statistical models. On the one hand, it requires little

additional knowledge about a process to develop a statistical model,

and the model can achieve a high prediction accuracy if the experi-

ment is designed appropriately with meaningful factors. That model

TABLE 3 The design and responses
of Study B.

Run order CSFR0 CSFR1 CSFR2 Titer (g/L) Via (%) Man5 (%)

1 0.33 0.33 0.33 7.07 85.66 5.13

2 1 0 0 7.44 73.96 4.40

3 0 0 0 6.89 85.15 4.46

4 �0.33 �0.33 �0.33 6.59 85.31 3.92

5 0.33 0.33 �0.33 7.34 85.04 5.10

6 0 0 0 7.01 86.23 4.63

7 0 0 0 6.79 86.47 4.46

8 �0.33 �0.33 0.33 6.16 82.16 3.64

9 0 1 0 6.59 87.24 4.23

10 0 0 1 6.84 85.72 4.44

11 0.33 �0.33 0.33 7.03 83.92 4.52

12 0 0 0 6.77 85.55 4.51

13 �1 0 0 5.27 81.74 3.01

14 0 �1 0 6.73 81.30 4.33

15 0 0 0 6.78 85.88 4.57

16 0.33 �0.33 �0.33 7.16 82.28 4.54

17 0 0 �1 6.98 84.09 4.53

18 �0.33 0.33 0.33 6.30 87.72 3.52

19 �0.33 0.33 �0.33 6.44 87.83 3.77

20 0 0 0 6.48 86.07 3.89

TABLE 4 The optimization problem and results of Study B.

Optimization problem

Objective Maximize Titer

Constraints �1≤CSFR0,CSFR1,CSFR2 ≤1

CSFR0j jþ CSFR1j jþ CSFR2j j≤1
Via≥80%

Man5 ≤5%

Results

CSFR0 CSFR1 CSFR2

0.73 0.26 0

Titer (prediction) Via (prediction) Man5 (prediction)

7.37 ± 0.185 g/L (79.9 ± 1.38) % (5.00 ± 0.359) %

F IGURE 7 Measured and predicted (Model A) titer responses.
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can then be used for optimizing process conditions as described in this

article.

On the other hand, process dynamics, initial conditions, and other

complex relationships are assumed to have no effect on the responses

and are often omitted when creating a statistical model—sometimes,

that assumption may not be valid, and a model based on it may be

inaccurate. In addition, interpreting DoDE results might be more chal-

lenging than interpreting conventional DoE results due to the extra

transformation between design factors and time trends. Avoiding

higher-order Legendre polynomials when possible and exercising cau-

tion when executing the time-varying conditions are necessary for a

DoDE study to be successful.

4 | CONCLUSION

In this article, we introduce the application of DoDE to cell culture pro-

cess development, specifically the optimization of time-varying CSFR

trends in fed-batch mAb manufacturing processes. We demonstrated the

usefulness of this approach in two Ambr250 studies and verified the

improvement in productivity experimentally in a large-scale experiment.

DoDE can be implemented via widely-available, off-the-shelf software;

therefore, the implementation will not incur additional process develop-

ment cost. On the contrary, an efficient DoDE can potentially save pro-

cess development cost compared with an iterative, OFAT design. We

also found a common relationship between CSFR and process responses

such as titer and viability—a CSFR trend with a higher average amount is

associated with a higher titer but lower viability, and a CSFR trend that

increases over time is associated with higher viability. We anticipate the

application of DoDE in process development to be a starting point for

more efficient, systematic, and standardized workflows across different

assets in cell culture process development.

To replicate the DoDE-based optimization in this article, one

needs to consider the following points. First, a conventional DoE with

static process conditions might be necessary prior to determining the

DoDE factor levels. For instance, CSFRmin and CSFRmax in Study A

were determined based on the data from the prior experiments such

that cells would not be over-fed or experience severe nutrient deple-

tion. Second, in the case of CSFR, two DoDE factors were found to

be sufficient for titer optimization purposes. The marginal benefit of

including more than two factors for CSFR was minimal. Third, one

needs to balance between the depth and the breadth of a DoDE. For

example, in Study A, we focused on testing a wide variety of factors

and discovered the significant interactions among CSFR, pH, and tem-

perature. However, due to the breadth of the design, we were not

able to dive deeper into the nonlinear effects or the effects of the

shape of CSFR on process responses.

The data from a DoDE study are also suitable for developing

dynamic process models as the data contain variations in both process

outputs and process inputs. Unlike statistical models such as the RSM

models used in this article, a dynamic process model can be used to

simulate the entire trajectory of multiple process variables of a batch

instead of only the single instances of those process variables

(e.g., the EoR titer). Using a dynamic process model, one can optimize

the process inputs more flexibly and develop dynamic input profiles

that are not constrained by the shapes of the basis polynomials. Fur-

thermore, a dynamic process model used in conjunction with a state

estimator and a model predictive controller can enable advanced pro-

cess control of productivity and product quality attributes.7 The

development of such a dynamic process model is not the scope of this

article and will be explored in the future works.
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