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a b s t r a c t 

Recent systemic failures in different domains have reminded us, once again, of the fragility of complex so- 

ciotechnical systems. Although the failures occurred in very different domains, there are, however, certain 

common underlying mechanisms driving these disasters. Understanding these mechanisms is essential to 

avoid such disasters in the future. To understand them, one needs to go beyond analyzing them as in- 

dependent one-off accidents, and examine them in the broader perspective of the potential fragility of 

sociotechnical systems. It is their scale, nonlinearity, inter-connectedness, and interactions with humans 

and the environment that can make these systems fragile. Here we present an overview of the chal- 

lenges and opportunities in the modeling and analysis of sociotechnical systems. We highlight a control- 

theoretic modeling framework that unifies the social and the technical components. We discuss how 

certain problems can be addressed by using concepts and techniques from causal modeling, game theory, 

and behavioral economics. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Control and risk management in complex sociotechnical sys-

ems pose unique modeling and execution challenges that go

ar beyond the ones faced in regulatory control problems. By

ociotechnical we mean systems that comprise social elements

namely, humans) as well as technical elements (such as pumps,

alves, reactors, etc.). The human elements are an integral part of

he system and are often the cause of major systemic failures. The

ask of designing such systems, and their control mechanisms at all

evels, to ensure safe operations over their life cycles is very chal-

enging. Complex sociotechnical systems have a very large number

f inter-connected components with nonlinear interactions that

an lead to “emergent” behavior—that is, the behavior of the whole

s more than the sum of its parts—that can be difficult to anticipate

nd control. Moreover, these systems are not isolated. They inter-

ct with the physical, market, and regulatory environments, result-

ng in complex feedback dynamics; in particular, human decision-

aking and the associated errors are part of the feedback pro-

esses in these systems. The cumulative effect of the nonlinear-

ty, inter-connectedness, and interactions with humans and the en-
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ironment makes these system-of-systems potentially fragile and

usceptible to systemic failures. 

Recent systemic failures in different domains such as the

lobal Financial Crisis (20 07–20 09), BP Deepwater Horizon Oil

pill (2010), and Indian Power Outage (2012) continue to remind us

f the fragility of complex sociotechnical systems. Systemic failures

ccur when an entire system collapses, where the system is typi-

ally a large entity whose failure negatively impacts a large num-

er of people and their environment, causing enormous financial

osses. Examples of such systems are refineries, inter-state power

rids, country-wide financial networks, large institutions, and so

orth. Union Carbide’s Bhopal Gas Tragedy in 1984, in which an

stimated 50 0 0 died and about 10 0,0 0 0 were seriously injured by

he accidental release of methyl isocynate was a systemic failure.

nother example is the Piper Alpha Disaster in 1988, where an off-

hore oil platform operated by Occidental Petroleum in the North

ea, U.K., exploded killing 167 and resulting in about $2 billion in

osses. 

The Challenger (1986) and Columbia (2003) Space Shuttle Dis-

sters, Schering Plough Inhaler Recall (1999), Northeast Power

lackout (20 03), SARS Outbreak (20 03), BP Texas City Refinery Ex-

losion (2005), Johnson & Johnson Multidrug Recall (2010), and

pper Big Branch Mine Disaster (2010) are all examples of sys-

emic failures in different domains. Examples of financial systemic

ailures include Enron (20 01) and WorldCom (20 02) Collapses, and

adoff Ponzi Scheme (2008). The Collapse of News of the World
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Newspaper Organization (2011) is an example of systemic failure

in the media domain. The Wells Fargo Accounts Scam (2016) and

Volkswagen Emissions Scandal (2016) are recent examples. 

In each case, official postmortem inquiries were conducted

and reports of the accidents were produced. Chemical engineers

might study, for example, the BP Texas City Refinery Explo-

sion Report ( Baker et al., 2007 ), and people from the finan-

cial world may browse, for example, The Financial Crisis In-

quiry Report ( FCIC, 2011 ), but rarely does one compare failures

across the different domains to study their commonalities and

differences. But when one undertakes such a comparative study

( Venkatasubramanian and Zhang, 2016 ), one is struck by the com-

monality across different domains. There is an alarming sameness

about such disasters, which can teach us important fundamental

lessons. Although the failures listed above occurred in different

domains, in different facilities, were triggered by different events,

there are, however, common failure mechanisms that often under-

lie such events. Systematically identifying and understanding these

mechanisms are essential to avoiding such disasters in the future.

In this paper, we discuss such a modeling framework, which em-

phasizes the need for including causal and game-theoretic models

as we begin to tackle this challenging control problem. 

2. Academic vs industrial view of process control 

To illustrate the need for causal models, let us start by contrast-

ing the academic and industrial views of process control. In the

typical academic view, we teach process control by introducing dy-

namic models of prototypical process systems (such as first-order

and second-order systems), Laplace transforms and transfer func-

tions, control block diagrams, Bode plots, instability and poles in

the right half plane, etc. This is the typical format of an under-

graduate process control course, the typical organization of a con-

trol textbook. The first author of this paper himself taught process

control along these lines for about twenty years at Purdue and for

five years at Columbia. 

Let us now contrast this academic view of process control with

the view as seen from a control operator’s perspective on an event-

ful day. Consider this scenario. Pump A, which is pumping oil, has

tripped and the alarm has gone off. The operator does not know

the cause of this failure. He switches to Pump B, which is a backup

pump installed in anticipation of such events, but that also trips

within a few minutes—again, cause(s) unknown. Soon, dozens of

alarms go off—the operator doesn’t know whether these are all due

to the same originating abnormal cause or whether there are mul-

tiple abnormal causes involved. Within a few minutes, there is an

explosion and fire, which kills two people and a few more are se-

riously injured in the plant. To make matters more challenging, it

is 10 p.m., and the operator is on an off-shore oil platform in the

middle of the North Sea. 

As the control board operator, how is he supposed to bring the

plant under control? 

As he struggles with the plant, under great time pressure,

he tries to recall the concepts and techniques he was taught in

his academic control course—all those Laplace transforms, transfer

functions, Bode plots, and poles in right half plane—that he spent

months mastering. None of them come to his help. All these are

useless at this moment as far as this operator is concerned. But

he has a process control problem—his process is out of control, big

time! What is he supposed to do? What process control knowl-

edge does he need, beyond what he was taught, to control this

abnormal process? 

Is this a plausible scenario? Can such an incident happen or did

the authors of this paper make up such a scenario to drive home

their point? 
Unfortunately, not only such an accident can happen, but it did

appen in real life. What we described is the initiating sequence of

ne of the worst ever chemical plant accidents in history, the Piper

lpha Disaster, which killed 167 people and resulted in about $2

illion in losses in 1988. 

When the alarms go off, operators want to know, in real-time,

nswers to questions such as: (i) What are the abnormal causes?

ii) What are the adverse consequences? (iii) How likely are these?

iv) Why these causes and consequences? (v) What is the causal

athway? (vi) What are the control options? (vii) How much time

ave I got? 

Can we develop a real-time operator advisory system that can

rovide such assistance? Answering these questions requires cause

nd effect reasoning , going back and forth between various poten-

ial abnormal causes and their adverse consequences, and analyz-

ng how best they fit the observed alarms and failures. Developing

uch causal models is missing in our traditional process control edu-

ation and research. How do we develop such models for real-time

utomation? This is the challenge the first author and his students

ave worked on for the past 30+ years. The causal models do not

eplace the traditional models we use in regulatory control, but

hey complement them. These causal models are essential as we go

p on the control hierarchy in a complex sociotechnical system—as

e try to model the decision-making in abnormal events manage-

ent, process hazards analysis, and so on. 

We view this as the next phase in the evolution of automated

rocess control systems. The last fifty years saw great progress

n the automation of low-level control, i.e., regulatory control, of

hemical process plants. We believe the next fifty would see the

mergence and dominance of intelligent control systems, through

he application of artificial intelligence (AI) methodologies, which

utomate higher-level control decisions in a complex plant. We be-

ieve the promise of AI for intelligent control is finally here, thanks

ostly to Moore’s Law, which has resulted in tremendous advances

n hardware, software, communication, and storage, coupled with

he crashing of the cost of all these ( Venkatasubramanian, 2018 ). 

The following comparison puts this progress in a startling per-

pective. In 1985, the supercomputer Cray-2, arguably the fastest

omputer in the world, performed 1.9 GFLOPS using a 244 MHz

rocessor, consumed 150 KW of power, and cost $32 million (in

010 dollars). Contrast that with a 2015 Apple Watch, with 3

FLOPS performance, 1 GHz processor, 1 W (!) power usage, cost-

ng about $300! It is a stunning gain of about 150,0 0 0 fold in

erformance/unit cost! This has serious implications in the com-

ng decades. This is why real-time map guidance, self-driving cars,

nd human-like robotic automation are realities now, no longer the

antasies they used to be when one of us (VV) embarked on devel-

ping AI methods for process systems engineering applications in

983. 

. TeCSMART: a hierarchical model of complex sociotechnical 

ystems 

Most human engineered complex systems, such as chemical

lants, corporations, transportation networks, power grids, govern-

ents, societies, etc., are organized as a hierarchical network of

uman and non-human (e.g., machines) entities. Generally speak-

ng, they comprise of autonomous and non-autonomous elements,

hich usually translate to human and non-human entities. In this

aper, we are not considering non-human entities that are au-

onomous, such as robots, as they have not reached human-like

utonomous capabilities yet, even though this is going to be an

mportant development in a couple of decades. 

We call our modeling framework as TeCSMART (Teleo-

entric System Model for Analyzing Risks and Threats)

 Venkatasubramanian and Zhang, 2016 ). Telos means goal or
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urpose in Greek. The central theme of our approach is the emphasis

n recognizing and modeling goals of different agents, at different

evels of abstraction, in a complex sociotechnical system. Both indi-

idual players and groups are goal-oriented, driven to act by their

oals and incentives, in a complex system. Individuals usually have

ifferent goals, or even goals with conflicts of interest with each

ther or with goals from other individuals. The dynamics of how

oals across the system interact, transform, and disperse in the

ierarchy is essential in affecting both individual and systemic

erformances. Modeling this results in a multi-scale modeling

ramework, having seven layers organized as a hierarchy, as shown

n Fig. 1 , that naturally arise and represent different perspectives

f the entire system. Each layer above is a zoomed-out, aggregate,

iew of the immediate layer below. For example, the block rep-

esenting process unit in the network of Plant View contains the

ndividual feedback loop in Equipment View. The bottom layer of

he stack is the basic building block of a system (e.g., equipment

nd processes). The top layer of the stack is the macroscopic view

f a society. 

Each layer has its own set of goals which drive the decision-

aking and actions taken by the agents in that level. The deci-

ions are taken based on the inputs the layer receives from the

ayers immediately above and below it. Similarly, the actions are

ommunicated to these adjacent layers as outputs. These deci-

ions/actions are indicated, in Fig. 1 , by the arrows that capture

hese information flows, up and down the hierarchy. These infor-

ation flows are the feedback loops between the layers (i.e., inter-

ayer feedback loops). There are also feedback loops within a given

ayer, as depicted in the figure, which are intra-layer loops. Asso-

iated with each layer is a set of agents (autonomous and non-

utonomous), organized in a particular configuration that is appro-

riate for the goals of that layer (e.g., the layout of equipment in a

hemical plant, called a flowsheet). Such a multi-layered represen-

ation lends itself naturally to account for emergent phenomena

hat arise from one scale to another. 

This is a uniform and unified input-output modeling framework

hat is conceptually the same across all levels. This elementary

nput-output model structure that serves as a building block in our

ramework is shown in Fig. 2 . Specifying such a uniform model-

ng structure across all levels has the advantage of integrating and

nifying the analysis of the outcomes at different levels in a con-

istent manner. Such a template structure allows us to systemat-

cally identify the various failure modes of the different elements

t different levels of the hierarchy as we have discussed elsewhere

 Venkatasubramanian and Zhang, 2016 ). 

There are seven key elements in this control-theoretic model-

ng building block: (i) input, (ii) output, (iii) sensor, (iv) actuator,

v) controller, (vi) “process” unit that transforms inputs to outputs,

nd (vii) connection (e.g., wires and pipes). 

As an organized group, these entities collect, decide, act on, re-

ort, and receive a variety of performance information and metrics.

n a chemical plant, for example, in the Equipment View layer, they

ollect, decide, and act on individual process and equipment per-

ormance information and metrics (such as temperature, pressure,

ow rate, batch times, etc.), that are vital for safe, efficient and

rofitable operation, and report them to the Plant View layer, and

eceive, in turn, local control specifications (such as temperature

nd pressure setpoints) from Plant View layer. 

The Plant View layer agents make these decisions by consid-

ring information from all the processes and equipment under its

urview as well as by considering manufacturing targets (such as

hat to make, how much to make, when to make, etc.). These tar-

ets, in turn, are decided by the agents in the Management View,

hich get translated into the associated setpoints and constraints

y the agents in the Plant View, and communicated down to the

quipment View as inputs. The target metrics are decided by the
gents in Management View by responding to competitive market

onditions as dictated by the Market View. In a similar manner,

elevant information regarding market or company stability, perfor-

ance, fair competition, etc., are monitored and acted on by the

gents in the Regulatory View, by enacting and enforcing appro-

riate regulations approved by the agents in the Government View

such as the Congress in the U.S.). In an ideal democracy, a gov-

rnment is elected by the citizens of that society, who have the

nal word in determining what kind of government and laws they

ould like to live by. 

Consider the Management View, for example, where the agents

nvolved are the critical decision-makers such as the CEO, Senior

ice Presidents, and Board of Directors. Their goal is to maxi-

ize profitability and create value for the shareholders by mak-

ng sure the company’s business performance metrics (including

afety) meet the expectations from the Market (which is the next

evel up). Influenced by the nature of business and accounting cy-

les, this layer operates in a time scale of quarter (i.e., 3-month pe-

iod) to a year. As seen in the control-theoretic information model

f this level in Fig. 3 , this group of decision-makers (Management

eam) sets the overall policies that “control” (i.e., manage) the be-

avior and outcomes of the corporation including its autonomous

nd non-autonomous assets. Autonomous agents at this layer in-

lude managers and supervisors of each division, while the non-

utonomous agents are corporate assets. The Market at the next

evel up sets and demands certain performance targets be met by

he company for its survival and growth. These metrics are usually

nancial at this level such as ROI, ROE, market hare, sales growth,

nd so forth. These are the setpoints and constraints given to the

anagement team. 

The Management team, in turn, translates these targets into ac-

ionable quantitative information such as production performance

etrics, strategic deployment of resources, and so forth, at differ-

nt plants (the corporation might have several plants distributed

ll over the world) as well as more qualitative ones that define

he company culture including the safety culture. They also set

he incentive policy to encourage better performance from the

mployees. These are communicated to the Plant View layer as

heir setpoints and constraints . The Management team decides on

hese targets by taking into account of all relevant information

oncerned with the survival, profitability, and growth of the com-

any in a competitive and regulatory environment. Thus, the infor-

ation flow is not only from the company’s internal sources but

lso from the environment, which are the two levels immediately

bove. 

Differing from the control policies at the lower levels, which

ainly focus on controlling equipment (i.e., non-autonomous

gents), the policies from this layer onward, at the higher lev-

ls, focus more on achieving the desired behavior and outcomes

rom autonomous agents (i.e., humans). As a result, while the

ower level control policies can be based on precise models of pro-

ess/equipment (as captured by DAE models), the higher level poli-

ies will necessarily have to deal with imperfect models of human

ehavior which cannot be reduced to a set of equations. 

Consider, for instance, the difficulties involved in “modeling”

he culture of a corporation. At best, we might be able to iden-

ify certain key features or characteristics that define a corpo-

ation’s culture. From this level onward, we have to rely more

n graph-theoretic, game-theoretic, and agent-based modeling frame-

orks . Thus, from this level onward modeling becomes trickier, and

he notion of “control” of agents transitions to the “management”

f agents. Moreover, the importance of TeCSMART failure modes-

ased examination becomes more obvious. Such a systematic risk

nalysis of human decision-making would help improving safety-

elated management activities, among other things. 
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Fig. 1. TeCSMART framework. 
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The Management team acts as a “controller” to monitor the

various performance metrics (e.g., sales, expenses, revenue, prof-

its, ROI, ROE, etc.), compare them with the setpoints, and take ap-

propriate actions by manipulating the relevant variables (e.g., cost

cutting, acquisition, etc.) in order to meet the setpoint targets. The
anagement level deals with the big picture and general strategy

or the corporation as a whole. These get translated into more de-

ailed prescriptions and recommendations as they are communi-

ated from this layer to the lower layers. The failure of the ele-

ents in Fig. 3 can be modeled along the lines of Equipment View
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Fig. 2. Schematic of a feedback control system (Adapted from Stephanopoulos (1984) , fig. 13.1b, pp. 241). 

Fig. 3. Control-theoretic model of company/management layer. 
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nd Plant View layers. For example, the Performance Monitoring

ask (i.e., “sensor”) may fail because of errors in the measurements

r estimations (e.g., fail high, low, or zero) or they may be com-

unicated (or not communicated at all) erroneously. One can me-

hodically identify similar failure modes for the other elements in-

luding the connections (which are the communication channels)

s we have described in Venkatasubramanian and Zhang (2016) . 

Thus, as we move higher up in the hierarchy, it becomes clear

hat we need causal models, often modeled as signed digraphs

SDG), and goal-driven, incentive-based, game-theoretic models,

ften addressed using agent-based models. As an example, we

how, in Figs. 4 and 5 , the hierarchical causal model of a sour

ater stripping plant that is used for automated process haz-

rds analysis. These figures show the knowledge representation

f cause-and-effect and failure modes knowledge using Petri nets

nd SDG. We have discussed such approaches in greater de-

ail elsewhere ( Bookstaber et al., 2015; Luo et al., 2016; Maurya

t al., 20 03a; 20 03b; 20 04; Srinivasan and Venkatasubramanian,

996; 1998a; 1998b; 1998c; Vaidhyanathan and Venkatasubrama-

ian, 1995; 1996; Venkatasubramanian, 2011; Venkatasubramanian

nd Rengaswamy, 20 03a; 20 03b; Venkatasubramanian et al., 20 03;

enkatasubramanian and Vaidhyanathan, 1994; Venkatasubrama- 

ian and Zhang, 2016; Venkatasubramanian et al., 20 0 0 ). 

We applied the TeCSMART framework to analyze the follow-

ng thirteen well-known systemic failures: (1) the Bhopal Disas-

er (1984), (2) the Space Shuttle Challenger Disaster (1986), (3)

he Piper Alpha Disaster (1988), (4) the SARS Outbreak (2003),

5) the Space Shuttle Columbia Disaster (2003), (6) the North-

ast Power Blackout (2003), (7) the BP Texas City Refinery Ex-

losion (2005), (8) Global Financial Crisis (2007–2009), (9) the

P Deepwater Horizon Oil Spill (2010), (10) the Upper Big Branch

t  
ine Disaster (2010), (11) the Chilean Mining Accident (2010), (12)

he Fukushima Daiichi Nuclear Disaster (2011), and (13) the India

lackouts (2012). 

We carefully reviewed the official postmortem reports of these

isasters as well as other relevant sources. We analyzed and clas-

ified over 700 failures mentioned in these reports ( Baker et al.,

007; Bonnefoy, 2010; Browning, 1993; CAIB, 2003; CERC, 2012;

SB, 2005; Cullen, 1993; FCIC, 2011; cha, 1986; Kurokawa et al.,

012; McAteer et al., 2011; PresidentialCommission, 2011; Task-

orce, 20 04; WHO, 20 06 ). We categorized these failures into five

rimary classes, and nineteen subclasses, that are consistent with

he typical failure modes we discussed in the previous section. The

ve classes are as follows: (1) Monitoring Failures; (2) Decision-

aking Failures; (3) Action Failures; (4) Communication Failures;

nd (5) Structural Failures. Each category has sub-categories that

efine more detailed failures. The details of this analysis can be

ound at Venkatasubramanian and Zhang (2016) . 

. Soft regulation: coordinating self-interested agents in 

ociotechnical systems 

As noted, the dynamics of the autonomous agents in the higher

evels of the hierarchy (e.g., regulators, policy-makers) are deter-

ined by incentive-based goal-driven behavior, whose modeling

nd analysis require incorporating a control-theoretic, behavioral

conomics approach. In this section, we present a novel frame-

ork, which we have named as soft regulation , for coordinating

ecision-makers at the industry and regulatory level. We only

resent an outline as the details have been discussed elsewhere

 Luo et al., 2016 ). 

In a typical regulatory environment involving conventional

echnologies, regulators issue mandates that have to be followed
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Fig. 4. Hierarchical causal model. 

Fig. 5. SDG and petri nets representation of the causal model. 
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by the regulated agents. The agents face fines and other punitive

consequences for non-compliance. We call this approach hard regu-

lation . While hard regulation might be effective in the lower levels

of the hierarchy (i.e., this is simply regulatory control), such as in

the Equipment Layer or the Plant Layer, where reasonably reliable

models of equipment and process are available, it is not effective

in the higher levels as such models are neither available nor even

possible. 

One possible course of action would be to offer options to

agents that are likely to be adopted because they are incen-

tive compatible, namely soft control ( Han et al., 2006; Zhang and

Parkes, 2008 ). Examples of this approach include the soft pater-

nalism approach for modifying social behavior ( Thaler and Sun-

stein, 2003 ) wherein carefully designed options “nudge” people

to make better decisions to be more environmentally aware or

healthy ( Thaler and Sunstein, 2008 ). However, as in the case with
ard control, soft control can be used only when there is a reli-

ble model and a well-defined setpoint . Soft paternalism and similar

ocial mechanisms are effective because we understand saving en-

rgy and staying physically active are the right things to do. 

What if we do not know what is best for the agents? Can we

omehow learn this as we function? Soft learning is a class of

earning mechanisms that appropriately incentivize agents in a

ocial network to aggregate such important information. Exam-

les of soft learning include social sensing and social learning

 Krishnamurthy and Poor, 2014; Rendell et al., 2010; Shmueli et al.,

014 ) in the context of real-time traffic information and online re-

iews (such as Yelp). 

Our new regulatory paradigm, soft regulation , combines fea-

ures of soft control and soft learning . The regulator aggregates key

ystem-level statistics in a “privacy preserving” ( Abbe et al., 2012 )

anner (individuals do not need to explicitly disclose their states)
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nd shares these statistics with all agents. The agents have the

exibility to accept, reject, or partially accept the recommenda-

ions from regulator based on their own self interests. The recom-

endations are simply “nudges” ( Thaler and Sunstein, 2008 ). The

echanism does not interrupt the regulated entities who have di-

ect access to field performance. It creates a collective learning en-

ironment for both the regulator and the agents. This partial ac-

eptance (or “confidence level” β) of recommendation is a crucial

eature of soft regulation. It critically determines the effectiveness

f the mechanism. Soft regulation seeks a balance between over-

nd under-regulation: Agents have the freedom to rely on both in-

ividual exploration and social learning. 

We expect soft regulation to be effective when the system has

he following features: 

1. Imperfect information : The action-utility payoff structure is

oorly understood, i.e., the data are noisy and the models are ab-

ent or incomplete . Each individual may only possess partial in-

ormation about the unknown process. Agents rely on inaccurate

easurements, approximations, or subjective evaluations to opti-

ize. 

2. Weak interaction : The agents can optimize their own actions

ithout taking into consideration the response of other agents,

.e., each’s utility or payoff is only a function of the agent’s own

tate, and the optimal setpoint is identical among agents. A good

xample of such a setting is the initial stages of a new technol-

gy; the resources being exploited are abundant and the profits of

he agents are not limited by competition but by their ability to

xploit the resource effectively. Although the reward an agent re-

eives while operating at a setpoint may vary, the setpoint itself,

owever, is likely to be identical or at least restricted to a narrow

ange. The discovered setpoints (by soft regulation or traditional

ethods) will later become the industry standards when the tech-

ology matures. Another example of setting with weak or no in-

eraction is when humans improve their own health conditions by

hanging habits, medications, or even environments. The interac-

ion among agents is usually minimal. Although each has his/her

wn unique physiological configurations, grouped by characteris-

ics such as age, gender, profession, etc., they are likely to exhibit

ommon optimal setpoints within groups. 

3. Bounded rationality : Agents are autonomous and self-

nterested, and they always move in a direction that locally im-

roves utility, subject to available information. 

Soft regulation creates a feedback system where agents have

he freedom to choose to accept this feedback. Feedback has

ong been recognized as an essential feature of complex adap-

ive systems where causes and effects are intertwined. There

ave been several attempts over the years to understand the

ynamics of social systems in terms of feedback control (see,

.g., Carver and Scheier (1982) ; Leveson (2011) ; Powers (1973) ;

rochim et al. (2006) ). While such contributions are useful ad-

ances, much of this work, however, is conceptual and qualitative. 

In contrast, soft regulation is a practical and quantitative

ethodology—self-interested agents use the feedback from past

utcomes to determine future actions, and the regulator provides

ll the agents a feedback that aggregates system-level information.

ne can extend this to include group, organization, even societal-

evel feedback loops. 

There are two ways to generate feedback for soft regulation:

he best recommendation and the crowd recommendation. As

he name suggests, best recommendation corresponds to the case

here the regulator has full information and computes the feed-

ack by solving a centralized optimal control problem. The crowd

ecommendation on the other hand, is simply the average of the

articipants’ actions. We have shown that, despite its simplicity,

rowd recommendation is as good as the best recommendation for

 wide range of β values ( Luo et al., 2016 ). This is actually not
urprising. The collective wisdom of groups has been discussed by

cholars, for example, in the Condorcet’s jury theorem ( De Con-

orcet, 2014 ) and in popular culture such as bestsellers The Wis-

om of Crowds ( Surowiecki, 2005 ) and Wiser: Getting Beyond

roupthink to Make Groups Smarter ( Sunstein and Hastie, 2014 ).

n our paper ( Luo et al., 2016 ), we proposed a control-theoretic

ramework that goes beyond one-time predictions and showed the

ffectiveness of the wisdom of crowds for optimizing a process us-

ng continuously refined information. 

We analyzed a stylized model of soft regulation that preserves

he essential features discussed previously. The system consists of

ne regulator and n agents. Agent i wants to select an action x i that

aximizes the value of the real-valued and strongly concave utility

unction f i ( x i ) over a convex compact set X ⊆ R . We assume that

lthough the individual utility functions f i are different for each

gent, the optimal setpoint θ ∗ = arg max x ∈ X f i (x ) is identical across

gents. 

We assume that the utility function f i ( x i ) is not explicitly

nown, nor is it deterministic; agents cannot solve the optimiza-

ion problem explicitly. In theory, by averaging out the noise, one

an obtain a more accurate mapping of the utility function. How-

ver, in our setting, each sample corresponds to actual utility each

gent receives; therefore, they might not have the incentive to

versample at the location where the utility is low. The agents up-

ate individual actions using the following dynamics: 

¯
 i = g i (x i ) (1) 

here g i denotes the optimization algorithm used by the i th agent.

n practice, g i can be any function that maps an old action x i to a

ew action x̄ i . In order to converge to the optimal θ ∗, the func-

ion must satisfy regularity conditions. More specifically, g i should

onverge to a unique fixed point regardless of the initial value of

 i . For instance, the Kiefer–Wolfowitz stochastic gradient method

 Kiefer and Wolfowitz, 1952 ) is one of the many techniques that

atisfy such condition. We call a setting where an agent updates

ts action based on its own measurement the open loop scenario

or asocial learning as in Rendell et al. (2010) ). 

 i (x i ) = x i + 

a t 

c t 
·
(

f i (x i + c t ) − f i (x i − c t ) 
)
. (2)

In the soft regulation setting the regulator computes a feedback

ecommendation u . The agents then combine u with x̄ i = g i (x i ) to

ompute a new action x + 
i 

and the dynamics can be described as a

eedback control loop: 

 

+ 
i 

= h i (x i ) ≡ (1 − βi ) g i (x i ) + βi u = (1 − βi ) ̄x i + βi u (3)

here β i ∈ [0, 1] or [0, 100%] is a measure of the confidence that

he i th agent puts on the feedback (or the degree of social influ-

nce if the feedback is from the peers ( Luo et al., 2018 )), and is

herefore, called the confidence level. The confidence level β plays

n important role in the resulting dynamics. Action changes are

elatively independent of recommendation for agents with small β
the explorers ), and action remains in the vicinity of u for agents

ith large β (the followers ). Note that h i ( x i ) can be re-written as

ollows: 

 i (x i ) = x i + (1 − βi )( ̄x i − x i ) + βi (u − x i ) . (4)

he soft regulation feedback function resembles the feedback seen

n bird flocks and swarm intelligence ( Kennedy, 2010 ). 

When the regulator is fully informed about the functions f i ,

 i , and β i , the optimal feedback u ∗ can be computed explicitly

y solving the following centralized optimal control problem that
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Table 1 

Model parameters. 

n σω θ ∗ k a t c t 

10 0 0 200 / 
√ 

3 0 100 1/ t 1 / (t + 200) 1 / 3 
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maximizes social welfare (sum of utilities) over the projected tra-

jectory: 

max u (t) 

∑ 

t 

w (t) 
∑ 

i 

f i (x i (t)) 

s.t. x i (t + 1) = (1 − βi ) g i (x i (t)) + βi u (t) 

(5)

where the time varying weight w ( t ) can favor either the present

or future. We call the solution u ∗ to this problem the best recom-

mendation. 

Since the function f i , g i , and the parameter β i are only pri-

vately known to the agents, in practice, it is unlikely that the

regulator knows the functions and the parameters. Following

Brotman (2014) , Surowiecki (2005) and Sunstein and Hastie (2014) ,

we assume that the regulator reports the average, i.e., u = 

1 
n 

∑ 

i x i .

We call this recommendation the crowd recommendation. Note

that using privacy preserving computations ( Abbe et al., 2012 ), the

regulator can compute the crowd recommendation without ever

learning any individual input x i . In Luo et al. (2016) , we proved

mathematically that the crowd recommendation ensures the con-

vergence to the optimal setpoint; moreover, we demonstrated us-

ing an agent-based model that it is as good as the best recommen-

dation for a wide range of β values. 

Recall that, we assumed the underlying action-utility payoff

function f i ( x i ) to be strongly concave. In the following simula-

tion and closed form analytical solution, we assumed that the dy-

namics of a group of heterogeneous agents can be described by

the same number of representative agents with an identical and

quadratic utility function f i (x i ) = f (x i ) = −k (x i − θ ∗) 2 + ω. The as-

sumption of representative agent is helpful in identifying the effect

of β value based on agent-based simulations as well as develop-

ing a closed form analytical solution. In order to study the con-

vergence behavior, one can without loss of generality, assume that

θ ∗ = 0 . This particular choice for f is motivated by the fact that

any strongly concave function can be approximated by a quadratic

function near its optimum. The noise is ω ∼ N (0 , σω ) . Agents only

observe the noisy function values—the underlying structure is not

known to the agents. 

We define the optimization efficiency as the percent reduction

in MSE: 

ηt ≡ MSE t 0 − MSE t 

MSE t 0 

× 100 . (6)

The efficiency is 100 when the system reaches optimum. We

simulated the agent dynamics in NetLogo. The model parameter

values are listed in Table 1 . The parameters do not represent prac-

tical meanings. The particular values are chosen such that the re-

sults are easily identifiable. a t and c t are the time-varying Kiefer–

Wolfowitz step sizes used by (2) . 

We first ran the simulation for soft regulation with best recom-

mendation. Given the quadratic utility, Kiefer–Wolfowitz algorithm,

and system-wide β value, the regulator can easily compute best

recommendation by solving (5) . The best recommendation is 

u 

∗(t) = −
(

(1 − β)(1 − 4 ka t ) 

β

)
· 1 

n 

∑ 

i 

x i (t) . (7)

In Fig. 6 , we plot the efficiency after 200 iterations against differ-

ent β values. The efficiency increases monotonically as the β value

increases. This result is not surprising. As the β value increases,

the regulator has a stronger influence on the agents, therefore, ex-

erting a more efficient control. Even though for each β value, the
egulator issues the best recommendation, the recommendation is

nly effective when the agents choose to listen. 

In Figs. 7 and 8 , we plot the efficiency against β value for soft

egulation with crowd recommendation. The results from Fig. 6 are

lso included as a reference. It is remarkable that soft regulation

ith crowd recommendation is as good as the one with best rec-

mmendation for a wide range of β values (from 0 to 99%). The

eal advantage of best recommendation only appears when the β
alue is close to 100%. However, to achieve this best recommenda-

ion or even hard regulation, the regulator needs information about

tility function, optimization algorithm, and the β value. This prac-

ice, despite being efficient under the setting of complete informa-

ion, is costly, impractical, and error prone in practical settings. Es-

ecially for hard regulation, additional cost of enforcement needs

o be considered. 

The results in Figs. 7 and 8 show that system only reaches

bout 70% optimum while the system performance is more than

0% optimal when the β value is 50% (i.e., the agent takes an av-

rage between its own optimization result and the recommenda-

ion). There is a sharp decline in performance when β value is too

lose to 100%. Beyond this “cliff,” the agents explore very little and

ssentially stay where they are. 

In Fig. 9 , we plot the time progressions of efficiency for differ-

nt β values. When β is low ( β = 0 or 10%), the MSE increases (ef-

ciency declines) before converging. This is caused by large initial

tep sizes. As β increases, the system begins convergence earlier.

s β further increases, the system shifts from the regime domi-

ated by exploration to the one dominated by conformity, and the

ecommendation does not have enough time to converge to opti-

um before agents start conforming. We also analytically approx-

mated the multi-agent system. Our approximation agrees closely

ith the simulation (see lines in all simulation result figures). In-

erested readers can find detailed derivations in Luo et al. (2016) . 

Despite the name, soft regulation has applications beyond

ndustrial regulation. The soft regulator module, i.e., x + 
i 

= (1 −
i ) ̄x i + βi u, can be integrated in different control systems and

roblem-solving scenarios. We only analyze a specific and stylized

odel in this paper to illustrate the efficacy of the mechanism. In

ractice, soft regulation should be implemented and modified in a

ase by case manner. For example, when the regulator can obtain

ore information other than the average action, it is entirely rea-

onable to formulate a better recommendation based on the richer

nformation set such as trends, histograms, etc. The agents, instead

f adjusting β value via the method proposed in this paper, can

lso explore and compare utilities (on a much slower timescale) to

dapt new β values. For a large population where centralized in-

ormation collection is impractical, soft regulation might be plausi-

le on a peer-to-peer basis. All these possibilities will be explored

nd analyzed in future work. 

The medical domain is another applicable area of soft regula-

ion. Powered by mobile phones and wearables, researchers can

ow collect timely mass medical data (via Apple’s ResearchKit

 Apple, 2015 ) for example). Soft regulation is suitable in this sce-

ario because medical research satisfies all three features, i.e., im-

erfect information (unknown relationships between patient be-

aviors and health conditions), weak interaction (one patient’s

ondition is not affected by another’s), and bounded rationality

patients always wish to improve their own health, however, have

imited information). In addition, thanks to the convenience of mo-

ile devices, we expect good participation rate. A large population

ize further ensures the accuracy of recommendation. Patients can

ptimize their own health while contributing to medical research.

ven if patients do not want to optimize themselves, medical re-

earchers may implement the soft regulation module to do that

ased on data collected locally. The β value can also be explicitly

ontrolled by the service provider. Soft regulation in this setting
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Fig. 6. Efficiency of soft regulation with best recommendation. 

Fig. 7. Efficiency of soft regulation with crowd recommendation. 

Fig. 8. Efficiency of soft regulation with crowd recommendation (large β values). 
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Fig. 9. Efficiency of soft regulation with crowd recommendation over time. 
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becomes a crowdsourcing framework. The results in this paper are

expected to hold. 

This work also has some implications other than our central ar-

guments on control and regulation. It reinforces the idea that an

averaged opinion can accurately predict under uncertainty, i.e., the

wisdom of crowds, given the population is large, independent, and

relevant. Unlike conventional takes on the wisdom of crowds, soft

regulation does not stop at collecting average information but also

feeds it back to the system. This dynamical mechanism suggests

more flexible scenarios and applications. Recall that weak interac-

tion is one of the features for an effective soft regulation of emerg-

ing technologies. A tightly coupled system where agents compete

with each other for limited resources (e.g., regulatory setting of de-

veloped technologies) requires a more sophisticated optimal con-

trol framework with game-theoretic components such as mecha-

nism design to guide decision-making at the regulatory level. 

5. Summary and conclusions 

In this paper, we have argued the need for including causal

and game-theoretic models in the control of complex sociotech-

nical systems. Our study using a unified control-theoretic frame-

work, namely, TeCSMART, shows how these apparently disparate

failures correspond to common failure modes associated with the

elements of a control system, namely, sensor, controller, actuator,

process unit, and communication channels. Even though every sys-

temic failure happens in some unique manner, and is not an exact

replica of a past event, we show that the underlying failure mecha-

nisms can be traced back to similar patterns associated with other

events, thus teaching us valuable lessons for the future. We believe

the use of causal models and failure models are indispensable in

this regard. In a similar vein, game-theoretic behavioral economics

models play an important role in the modeling of decision-making

in complex sociotechnical systems. In this context, we have pro-

posed a novel framework, called soft regulation , which addresses

some of the challenges faced by regulators. Modeling frameworks

such the ones we have proposed are the beginnings of the next era

in the development of intelligent control systems for complex so-

ciotechnical systems. This program has a long way to go, perhaps

two to three decades, but it is bound to revolutionize automatic

control as regulatory control and model predictive control did in

the last four decades. 
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